Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (6) : 575-579,585     DOI: 10.16511/j.cnki.qhdxxb.2017.26.021
COMPUTER SCIENCE AND TECHNOLOGY |
Semantic relevancy between sentences for Chinese reading comprehension on college entrance examinations
GUO Shaoru1, ZHANG Hu1, QIAN Yili1, LI Ru1,2, YANG Zhizhuo1, GU Zhaojun3, MA Shuhui1
1. School of Computer & Information Technology, Shanxi University, Taiyuan 030006, China;
2. Key Laboratory of Ministry of Education for Computation Intelligence & Chinese Information Processing, Shanxi University, Taiyuan 030006, China;
3. Information Security Evaluation Center, Civil Aviation University of China, Tianjin 300300, China
Download: PDF(1167 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Multiple-choice reading comprehension questions in the Chinese College Entrance Examination are based on the given background material with the reader selecting the best option from a number of options. The answer may not be directly found in the background material since the passage is relatively short and the key information is hidden. Thus, information mining from the background material and semantic relevancy analyses with options are keys to solving the problem, with sentence level semantic relevancy analysis as the foundation. This paper presents an algorithm to calculate the semantic relevancy between sentences based on Multi-Dimension Voting by analyzing large numbers of multiple-choice questions from Chinese scientific article text understanding questions from college entrance examinations. The method utilizes the voting algorithm to take advantage of different size metrics to select the best option. The algorithm accuracy for the national college entrance examination of Beijing text understanding questions is 53.84%, which verifies the validity of the method.
Keywords Chinese college entrance examination      text understanding      multiple-choice questions      multi-dimension voting      semantic relevancy     
ZTFLH:  TP391.1  
Issue Date: 15 June 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Shaoru
ZHANG Hu
QIAN Yili
LI Ru
YANG Zhizhuo
GU Zhaojun
MA Shuhui
Cite this article:   
GUO Shaoru,ZHANG Hu,QIAN Yili, et al. Semantic relevancy between sentences for Chinese reading comprehension on college entrance examinations[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(6): 575-579,585.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.26.021     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I6/575
  
  
  
  
  
  
[1] 吴友政, 赵军, 段湘煜, 等. 问答式检索技术及评测研究综述[J]. 中文信息学报, 2005, 19(3):2-14. WU Youzheng, ZHAO Jun, DUAN Xiangyu, et al. Research on question answering & evaluation:A survey[J]. Journal of Chinese Information Processing, 2005, 19(3):2-14. (in Chinese)
[2] Berant J, Chou A, Frostig R, et al. Semantic parsing on freebase from question-answer pairs[C]//Proceedings of EMNLP. Seattle, WA, USA:EMNLP, 2013:6-17.
[3] Antoine Y B, Sumit C. Question answering with subgraph embeddings[C]//EMNLP. Doha, Qatar:EMNLP, 2014:615-620.
[4] Ferrucci D, Brown E, Chu-Carroll J, et al. Building watson:An overview of the deep QA project[J]. AI Magazine, 2010, 31(3):59-79.
[5] Zhang K, Wu W, Wang F, et al. Learning distributed representations of data in community question answering for question retrieval[C]//Ninth ACM International Conference on Web Search and Data Mining. Amsterdam, Holland:ACM Press, 2016:533-542.
[6] 黄昌宁.从IBM深度问答系统战胜顶尖人类选手所想到的[J].中文信息学报, 2011, 25(6):21-25. HUANG Changning. Thinking about deep QA beating human champions[J]. Journal of Chinese Information Processing, 2011, 25(6):21-25. (in Chinese)
[7] Richardson M, Burges C J C, Renshaw E. MCTest:A challenge dataset for the open-domain machine comprehension of text[C]//Proceedings of EMNLP. Seattle, WS, USA:EMNLP, 2013:193-203.
[8] Narasimhan K, Barzilay R. Machine comprehension with discourse relations[C]//Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing. Beijing, China:ACL Press, 2015:1253-1262.
[9] Sachan M, Dubey K, Xing E, et al. Learning answer-entailing structures for machine comprehension[C]//Meeting of the Association for Computational Linguistics and the, International Joint Conference on Natural Language Processing. Beijing, China:ACL Press, 2015:239-249.
[10] Wang H, Bansal M, Gimpel K, et al. Machine comprehension with syntax, frames, and semantics[C]//Meeting of the Association for Computational Linguistics and the, International Joint Conference on Natural Language Processing. Beijing, China:ACL Press, 2015:700-706.
[11] 刘群, 李素建. 基于《知网》 的词汇语义相似度计算[J]. 中文计算语言学, 2002, 7(2):59-76.LIU Qun, LI Sujian. Word similarity computing based on how-net[J]. Computational Linguistics and Chinese Language Processing, 2002, 7(2):59-76. (in Chinese)
[12] 郝晓燕, 刘伟, 李茹, 等. 汉语框架语义知识库及软件描述体系[J]. 中文信息学报, 2007, 21(5):96-100. HAO Xiaoyan, LIU Wei, LI Ru, et al. Description systems of the Chinese framenet database and software tools[J]. Journal of Chinese Information Processing, 2007, 21(5):96-100. (in Chinese)
[13] Fillmore C J. Frame semantics and the nature of language[J]. Annals of the New York Academy of Sciences, 1976, 280(1):20-32.
[14] Baker C F, Fillmore C J, Lowe J B. The Berkeley framenet project[C]//Annual Meeting of the Association for ComputationalLinguistics and 17th International Conference on Computational Linguistics-Volume 1. Montreal, Quebec, Canada:ACL Press, 1998:86-90.
[15] Ruppenhofer J, Sporleder C, Morante R, et al. Semeval-2010 task 10:Linking events and their participants in discourse[C]//International Workshop on Semantic Evaluation. Uppsala, Sweden:ACL Press, 2010:45-50.
[16] 李茹. 汉语句子框架语义结构分析技术研究[D]. 太原:山西大学, 2012. LI Ru. Research on Frame Semantic Structure Analysis Technology for Chinese Sentences[D]. Taiyuan:Shanxi University, 2012. (in Chinese)
[17] Che W, Li Z, Liu T. LTP:A Chinese language technology platform[C]//International Conference on Computational Linguistics. Beijing, China:DBLP, 2010:13-16.
[18] Dempster A P. Upper and lower probabilities induced by a multi-valued mapping[J]. Annals of Mathematical Statistics, 1967, 38(2):325-339.
[19] Inglis J. A mathematical theory of evidence[J]. Technometrics, 1978, 20(1):242-242.
[1] ZHU Wuxiang, LIAO Jingqiu, ZHAN Ziliang, TAN Zhijia. Systematic review and future perspectives of financial distress prediction studies: Back to the principle of finance[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1467-1482.
[2] SHEN Fangyao, DAI Guojun, DAI Chenglei, GUO Hongjie, ZHANG Hua. CTR prediction for online advertising based on a features conjunction model[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 374-379.
[3] ZHANG Jing, HUANG Degen, HUANG Kaiyu, LIU Zhuang, MENG Xiangzhu. λ-active learning based microblog-oriented Chinese word segmentation[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 260-265.
[4] ZHANG Yangsen, ZHENG Jia, HUANG Gaijuan, JIANG Yuru. Microblog sentiment analysis method based on a double attention model[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 122-130.
[5] Hankiz Yilahun, Gulmire Imam, Maynur Ablitip, Guljamal Mamateli, Askar Hamdulla. Undulating scale of intonations of exclamatory Uyghur sentences[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1254-1258.
[6] WANG Suge, LI Dayu, LI Yang. Sentiment mining of commodity reputation data based on joint model[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 926-931.
[7] Mijit Ablimit, Akbar Pattar, Askar Hamdulla. Multilayer structure based lexicon optimization for language modeling[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 257-263.
[8] IMAM Seyyare, PARHAT Rayilam, HAMDULLA Askar, LI Zhijun. Keyword extraction algorithms for emotion recognition from Uyghur text[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 270-273.
[9] Abdurahim Mahmoud, Hussein Yusuf, ZHANG Jiajun, ZONG Chengqing, Askar Hamdulla. Name recognition in the Uyghur language based on fuzzy matching and syllable-character conversion[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 188-196.
[10] Abdusalam Dawut, Hussein Yusuf, Askar Hamdulla. Emotion recognition from Uyghur sentences based on combinations of class discrimination words and a sentiment dictionary[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 197-201.
[11] GAO Yingying, ZHU Weibin. Describing and predicting affective messages for expressive speech synthesis[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 202-207.
[12] LIU Zewen, DING Dong, LI Chunwen. Chinese word segmentation method for short Chinese text based on conditional random fields[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(8): 906-910,915.
[13] WANG Bingkun, HUANG Yongfeng, LI Xing. Sentiment classification based on multi-granularity computing and multi-criteria fusion[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(5): 497-502.
[14] CHEN Yuanlin, CHAI Yueting, LIU Yi, XU Yang. Transaction rating credibility based on user group preference[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(5): 558-564,571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd