Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (9) : 945-951     DOI: 10.16511/j.cnki.qhdxxb.2017.26.045
ELECTRICAL ENGINEERING |
Radius vector-driven 3-D Mandarin vocal tract model
YAO Yun1, WU Xiyu2, KONG Jiangping2
1. College of Chinese Language and Literature, Henan University, Kaifeng 475001, China;
2. Department of Chinese Language and Literature, Peking University, Beijing 100871, China
Download: PDF(2949 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Analyses of the vocal tract resonant characteristics need accurate models of the vocal tract shape. This article presents a three-dimensional Mandarin vocal tract model using vocal tract shape data and midsagittal radius vector data from MRI images for seven Mandarin sustained vowels[a],[o],[r],[i],[u],[y] and[e]. The vocal tracts images were cut into 36 sections of equal distances along the midline of the vocal tract. The Mandarin vocal tract model for each section is then driven by the length of the radius vector in the cross-sectional images. The sound synthesized by this model sounds very much like natural speech.
Keywords Mandarin      vocal tract model      radius vector     
ZTFLH:  H017  
Issue Date: 15 September 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAO Yun
WU Xiyu
KONG Jiangping
Cite this article:   
YAO Yun,WU Xiyu,KONG Jiangping. Radius vector-driven 3-D Mandarin vocal tract model[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 945-951.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.26.045     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I9/945
  
  
  
  
  
  
  
  
[1] 马大猷. 说话的科学技术[M]. 北京:清华大学出版社, 2004.MA Dayou. Talking Science and Technology[M]. Beijing:Tsinghua University Press, 2004. (in Chinese)
[2] Stevens K N, House A S. Development of a quantitative description of vowel articulation[J]. Journal of the Acoustical Society of America, 1955, 27:484-493.
url: http://dx.doi.org/10.1121/1.1907943
[3] Fant G. The Acoustic Theory of Speech Production[M]. Hague:Mouton, 1960.
[4] Heinz J M, Stevens K N. On the derivation of area functions and acoustic spectra from cineradiographic films of speech[J]. Journal of the Acoustical Society of America, 1964, 36:1037.
[5] Sundberg J. On the problem of obtaining area functions from lateral X-ray pictures of the vocal tract[J]. Royal Inst Technol STL-QPSR, 1969, 1:43-45.
[6] Chiba T, Kajiyama M. The Vowel:Its Nature and Structure[M]. Tokyo:Kaiseikan Publishing Company, 1942.
[7] Baer T, Gore J C, Gracco L C, et al. Analysis of vocal tract shape and dimensions using magnetic resonance imaging:vowels[J]. Journal of the Acoustical Society of America, 1991, 90(2):799-828.
[8] Story B H, Hoffman E A, Titze I R. Vocal tract imaging:A comparison of MRI and EBCT[J]. Medical Imaging Physiology and Function from Multidimensional Images, Hoffman, 1996, 2709:209-222.
[9] Narayanan S S, Alwan A A, Haker K. Toward articulatory-acoustic models for liquid approximants based on MRI and EPG data. Part I. The laterals[J]. Journal of the Acoustical Society of America, 1997, 101(2):1064-1077.
[10] Alwan A, Narayanan S, Haker K. Toward articulatory-acoustic models for liquid approximants based on MRI and EPG data. Part Ⅱ. The rhotics[J]. Journal of the Acoustical Society of America, 1997, 101(2):1078-1089.
[11] Espy-Wilson C Y, Boyce S E, Jackson M, et al. Acoustic modeling of American English vertical bar r vertical bar[J]. Journal of the Acoustical Society of America, 2000, 108(1):343-356.
[12] Story B H, Titze I R. Parameterization of vocal tract area functions by empirical orthogonal modes[J]. Journal of Phonetics, 1998, 26(3):223-260.
[13] Story B H. A parametric model of the vocal tract area function for vowel and consonant simulation[J]. Journal of the Acoustical Society of America, 2005, 117(5):3231-3254.
[14] Dang J W, Honda K. Construction and control of a physiological articulatory model[J]. Journal of the Acoustical Society of America, 2004, 115(2):853-870.
[15] Dang J W, Honda K. Estimation of vocal tract shapes from speech sounds with a physiological articulatory model[J]. Journal of Phonetics, 2002, 30(3):511-532.
[16] Dang J W, Honda K, Suzuki H. Morphological and acoustical analysis of the nasal and the paranasal cavities[J]. Journal of the Acoustical Society of America, 1994, 96(4):2088-2100.
[17] Dang J W, Honda K. Acoustic characteristics of the piriform fossa in models and humans[J]. Journal of the Acoustical Society of America, 1997, 101(1):456-465.
[18] Dang J W, Shadle C H, Kawanishi Y, et al. An experimental study of the open end correction coefficient for side branches within an acoustic tube[J]. Journal of the Acoustical Society of America, 1998, 104(2):1075-1084.
[1] GU Wentao. Error patterns in fundamental frequency contours of L2 Mandarin utterances by Cantonese and English learners[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1166-1172.
[2] LI Shanpeng, GU Wentao. Acoustic characteristics of Mandarin affricates[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1202-1208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd