Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (9) : 980-985     DOI: 10.16511/j.cnki.qhdxxb.2017.26.051
MECHANICAL ENGINEERING |
Flow-difference feedback iteration method for aerostatic bearings
LI Yazhe, ZHOU Kai
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1298 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Aerostatic bearings using air as the lubricant are especially useful in high-speed situations. This study of aerostatic bearings used a finite difference model of an aerostatic thrust bearing in polar coordinates based on the Reynolds equation with an improved flow-difference feedback iteration method. The relative error in the flow equilibrium updated by the iteration is used as the feedback variable to rectify the convergence rate factors. The initial value does not strongly influence the convergence rate, while the improved flow-difference feedback iteration method increases the effectiveness of the convergence rate factors. An analysis of the influence of the throttle parameter on the bearing performance shows that the proper orifices and clearance significantly improve the bearing stiffness.
Keywords flow-difference feedback iteration method      aerostatic thrust bearing      Reynolds equation      finite difference method (FDM)     
ZTFLH:  TH133.35  
Issue Date: 15 September 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yazhe
ZHOU Kai
Cite this article:   
LI Yazhe,ZHOU Kai. Flow-difference feedback iteration method for aerostatic bearings[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 980-985.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.26.051     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I9/980
  
  
  
  
  
  
  
  
  
  
[1] Powell J W. Design of Aerostatic Bearings[M]. London:Machinery Publishing, 1970.
[2] Szeri A Z. Fluid Film Lubrication:Theory and Design[M]. Cambridge:Cambridge University Press, 2005.
[3] Franssen R M, Potze W, de Jong P, et al. Large amplitude dynamic behavior of thrust air bearings:Modeling and experiments[J]. Tribology International, 2017, 109:460-466.
url: http://dx.doi.org/10.1016/j.triboint.2016.12.024
[4] Nicoletti R, Purquerio B D M, Silveira Z D C. The effect of permeability distribution on the numerical analysis of aerostatic ceramic porous bearings[J]. Lubrication Science, 2013, 25(2):185-194.
[5] Zhu J, Chen H, Chen X. Large eddy simulation of vortex shedding and pressure fluctuation in aerostatic bearings[J]. Journal of Fluids & Structures, 2013, 40(7):42-51.
url: http://dx.doi.org/al of Fluids
[6] Neves M T, Schwarz V A, Menon G J. Discharge coefficient influence on the performance of aerostatic journal bearings[J]. Tribology International, 2010, 43(4):746-751.
[7] Gero L R, Ettles C M M. An evaluation of finite difference and finite element methods for the solution of the Reynolds equation[J]. Tribology Transactions, 1986, 29(2):166-172.
[8] Tala-Ighil N, Fillon M. A numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics[J]. Tribology International, 2015, 90:228-239.
url: http://dx.doi.org/10.1016/j.triboint.2015.02.032
[9] Lo C Y, Wang C C, Lee Y H. Performance analysis of high-speed spindle aerostatic bearings[J]. Tribology International, 2005, 38(1):5-14.
[10] 刘暾, 刘育华, 陈世杰.静压气体润滑[M]. 哈尔滨:哈尔滨工业大学出版社, 1990.LIU Dun, LIU Yuhua, CHEN Shijie. Aerostatic Lubrication[M]. Harbin:Harbin Institute of Technology Press, 1990. (in Chinese)
[11] Chen Y S, Chiu C C, Cheng Y D. Influences of operational conditions and geometric parameters on the stiffness of aerostatic journal bearings[J]. Precision Engineering, 2010, 34(4):722-734.
[12] Li Y, Zhou K, Zhang Z. A flow-difference feedback iteration method and its application to high-speed aerostatic journal bearings[J]. Tribology International, 2014, 84:132-141.
[13] 党根茂. 气体润滑技术[M]. 南京:东南大学出版社, 1990.DANG Genmao. Technology of Gas Lubrication[M]. Nanjing:Southeast University Press, 1990. (in Chinese)
[14] Hori Y. Hydrodynamic Lubrication[M]. Berlin:Springer Science & Business Media, 2006.
[15] 王云飞. 气体润滑理论与气体轴承设计[M]. 北京:中国机械工业出版社, 1999.WANG Yunfei. Gas Lubricated Theory and Design Manual of Gas Bearings[M]. Beijing:China Machinery Industry Press, 1999. (in Chinese)
[16] Stoer J, Bulirsch R. Introduction to Numerical Analysis[M]. Berlin:Springer Science & Business Media, 2013.
[17] 张君安. 高刚度空气静压轴承研究[D]. 西安:西北工业大学, 2006.ZHANG Junan. Research on High Stiffness Aerostatic Bearing[D]. Xi'an:Northwestern Polytechnic University, 2006. (in Chinese)
[18] Zheng S F, Jiang S Y. Improved finite difference method for pressure distribution of aerostatic bearing[J]. Journal of Southeast University, 2009, 25(4):501-505.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd