Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (9) : 993-998     DOI: 10.16511/j.cnki.qhdxxb.2017.26.053
NUCLEAR ENERGY AND NEW ENERGY |
Suppression of base vibrations in a magnetically suspended flywheel system based on axial force free control
PU Pengcheng1, ZHANG Kai2, LIU Pingfan1, ZHAO Lei1
1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
2. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Download: PDF(1865 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Vibrations of the housing or base is one of the key problems influencing the running accuracy of high-speed magnetic suspended flywheels. Flywheel rotors with an outer-rotor structures have geometrical errors that cause base vibrations when the angle between the normal to the axial reference plane and the rotor spinning axis is within a specific range. The amplitude of synchronous vibrations of the base is mainly determined by the rotor unbalance and geometric error in the measurement plane of the displacement sensor. Base vibrations are suppressed here by an axial force free control method based on conventional force free control. Three controllers were analyzed in tests with no unbalanced control, only radial unbalance control and radial-axial unbalance control. The unbalanced control simultaneously acts on differ degrees of freedom of the rotor to more effectively suppress the base vibrations. Tests show that, at full operating speed, the control method effectively eliminates axial synchronous vibrations in the rotor and then suppresses base vibrations. Force free control can also be applied in the direction of gravity. This axial force free control achieves better vibration suppression performance and has wider applications field than conventional force free control of magnetic bearing
Keywords magnetically suspended flywheel      geometrical error      force free control     
ZTFLH:  TH133.3  
Issue Date: 15 September 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PU Pengcheng
ZHANG Kai
LIU Pingfan
ZHAO Lei
Cite this article:   
PU Pengcheng,ZHANG Kai,LIU Pingfan, et al. Suppression of base vibrations in a magnetically suspended flywheel system based on axial force free control[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 993-998.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.26.053     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I9/993
  
  
  
  
  
  
  
  
  
  
[1] Xie Y C, Sawada H, Hashimoto T, et al. Adaptive model following control method for actively controlled magnetic bearing momentum wheel[C]//Proceedings of the 5th International Symposium on Magnetic Suspension Technology. Santa Barbara, CA, USA:NASA, 1999:547-561.
[2] 房建成, 孙津济, 樊亚洪等. 磁悬浮惯性动量轮技术[M]. 北京:国防工业出版社, 2012.FANG Jiancheng, SUN Jinji, FAN Yahong, et al. Magnetically Suspended Inertial Momentum Wheel Technology[M]. Beijing:National Defense Industry Press, 2012. (in Chinese)
[3] Bleuler H, Cole M, Keogh P, et al. Magnetic Bearings:Theory, Design, and Application to Rotating Machinery[M]. Berlin, Heidelberg:Springer-Verlag, 2009.
[4] 张剀, 张小章. 磁轴承不平衡控制技术的研究进展[J]. 中国机械工程, 2010, 21(8):897-903.ZHANG Kai, ZHANG Xiaozhang. A review of unbalance control technology of active magnetic bearings[J]. China Mechanical Engineering, 2010, 21(8):897-903. (in Chinese)
[5] Habermann H, Brunet M. The active magnetic bearing enables optimum damping of flexible rotor[C]//ASME 1984 International Gas Turbine Conference. Amsterdam, Holland:ASME, 1984, 84-GT-117.
[6] Herzog R, Buhler P, Gahler C, et al. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5):580-586.
[7] Shi J, Zmood R, Qin L J. The direct method for adaptive feed-forward vibration control of magnetic bearing systems[C]//Proceedings of 7th International Conference on Control, Automation, Robotics and Vision. Marina Mandarin, Singapore:IEEE Press, 2002:675-680.
[8] 黄晓蔚, 唐钟麟. 电磁轴承系统实现自动平衡的一种新方法[J]. 机械工程学报, 2001, 37(7):96-99.HUANG Xiaowei, TANG Zhonglin. New method for autobalancing with active magnetic bearings[J]. Chinese Journal of Mechanical Engineering, 2001, 37(7):96-99. (in Chinese)
[9] Sivrioglu S, Nonami K. LMI approach to gain scheduled H/sub/spl infin//control beyond PID control for gyroscopic rotor-magnetic bearing system[C]//Proceedings of the 35th IEEE Conference on Decision and Control. Kobe, Japan:IEEE Press, 1996:3694-3699.
[10] Matsumura F, Namerikawa T, Hagiwara K, et al. Application of gain scheduled H/sub/spl infin//robust controllers to a magnetic bearing[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5):484-493.
[11] Mohamed A M, Hassan I M M, Hashem A M K. Application of discrete-time gain-scheduled q-parameterization controllers to magnetic bearing systems with imbalance[C]//Proceedings of The American Control Conference. San Diego, CA, USA:IEEE Press, 1999:598-602.
[12] Mohamed A M, Matsumura F, Namerikawa T, et al. Q-parameterization control of vibrations in a variable speed magnetic bearing[C]//Proceedings of the 1997 IEEE International Conference on Control Applications. Hartford, CT, USA:IEEE Press, 1997:540-546.
[1] LI Yazhe, ZHOU Kai. Flow-difference feedback iteration method for aerostatic bearings[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 980-985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd