Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (11) : 1159-1162,1169     DOI: 10.16511/j.cnki.qhdxxb.2017.26.060
COMPUTER SCIENCE AND TECHNOLOGY |
Hybrid feature extraction from ultrasound images for a silent speech interface
LU Wenhuan1, QU Yuexin1, YANG Yalong1, WANG Jianrong2, DANG Jianwu2
1. School of Computer Software, Tianjin University, Tianjin 300350, China;
2. School of Computer Science and Technology, Tianjin University, Tianjin 300350, China
Download: PDF(1302 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Principal component analysis (PCA) and discrete cosine transform (DCT) are used to extract features from ultrasound images to build an ultrasound based silent speech interface. The critical information in the image is presented by using three hybrid feature extraction methods. The first method uses PCA to extract discrete wavelet transform coefficient features. The second and third methods truncate the DCT or Walsh-Hadamard transform coefficients to the appropriate number according to the energy with the truncated coefficients then used by PCA to extract the features. Tests show that this hybrid feature extraction method outperforms standalone PCA or DCT analyses. The block DCT-PCA method gives the best result among all the methods.
Keywords silent speech interface      ultrasound      tongue      principal component analysis      discrete cosine transform      Walsh-Hadamard transform     
ZTFLH:  TP391.4  
Issue Date: 15 November 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Wenhuan
QU Yuexin
YANG Yalong
WANG Jianrong
DANG Jianwu
Cite this article:   
LU Wenhuan,QU Yuexin,YANG Yalong, et al. Hybrid feature extraction from ultrasound images for a silent speech interface[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1159-1162,1169.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.26.060     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I11/1159
  
  
  
  
  
  
[1] Denby B, Schultz T, Honda K, et al. Silent speech interfaces[J]. Speech Communication, 2010, 52(4):270-287.
[2] Denby B, Oussar Y, Dreyfus G, et al. Prospects for a silent speech interface using ultrasound imaging[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ, USA:IEEE Press, 2006:365-368.
[3] Hueber T, Chollet G, Denby B, et al. Acquisition of ultrasound, video and acoustic speech data for a silent-speech interface application[J]. Proc of ISSP, 2008:365-369.
[4] Denby B, Stone M. Speech synthesis from real time ultrasound images of the tongue[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ, USA:IEEE Press, 2004:685-688.
[5] Hueber T, Aversano G, Chollet G, et al. Eigentongue feature extraction for an ultrasound-based silent speech interface[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ, USA:IEEE Press, 2007:1245-1248.
[6] Cai J, Denby B, Roussel-Ragot P, et al. Recognition and real time performances of a lightweight ultrasound based silent speech interface employing a language model[C]//INTERSPEECH. Baixas, France:ISCA, 2011:1005-1008.
[7] Hueber T, Benaroya E L, Chollet G, et al. Development of a silent speech interface driven by ultrasound and optical images of the tongue and lips[J]. Speech Communication, 2010, 52(4):288-300.
[8] Safari M, Harandi M T, Araabi B N. A SVM-based method for face recognition using a wavelet PCA representation of faces[C]//International Conference on Image Processing. Piscataway, NJ, USA:IEEE Press, 2004:853-856.
[9] Puyati W, Walairacht A. Efficiency improvement for unconstrained face recognition by weightening probability values of modular PCA and wavelet PCA[C]//International Conference on Advanced Communication. Piscataway, NJ, USA:IEEE Press, 2008:1449-1453.
[10] Chitaliya N G, Trivedi A I. Feature extraction using Wavelet-PCA and neural network for application of object classification & face recognition[C]//International Conference on Computer Engineering and Applications. Piscataway, NJ, USA:IEEE Press, 2010:510-514.
[11] Akrouf S, Sehili M A, Chakhchoukh A, et al. Face recognition using PCA and DCT[C]//Proceedings Fifth International Conference on MEMS, Nano, and Smart Systems. Los Alamitos, CA, USA:IEEE Computer Society, 2009:15-19.
[12] Hong X, Yao H, Wan Y, et al. A PCA based visual DCT feature extraction method for lip-reading[C]//International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Los Alamitos, CA, USA:IEEE Computer Society, 2006:321-326.
[13] Hassan M, Osman I, Yahia M. Walsh-hadamard transform for facial feature extraction in face recognition[J]. Proceedings of World Academy of Science Engineering & Technolog, 2007, 1(3):1264-1268.
url: http://dx.doi.org/edings of World Academy of Science Engineering
[14] Young S J, Jansen J, Odell J J, et al. The HTK Hidden Markov Model Toolkit Book[M]. Cambridge:Entropic Cambridge Research Laboratory, 1995.
[15] Yuan J, Ryant N, Liberman M, et al. Automatic phonetic segmentation using boundary models[C]//INTERSPEECH. Lyon, France:ISCA, 2013:2306-2310.
[1] XIONG Qian, TANG Wenzhe, WANG Zhongjing. Factor analysis and system construction of integrated water resource management in the Xiong'an New Area[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(2): 255-263.
[2] HUANG Zhongshan, TIAN Ling, XIANG Dong, WEI Yaozhong. Prediction of oil temperature variations in a wind turbine gearbox based on PCA and an SPC-dynamic neural network hybrid[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 539-546.
[3] LU Wenhuan, FENG Xiaoyan, HONDA Kiyoshi, WEI Jianguo. MRI analyses of the effects of relative tongue size on individual articulatory differences[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 357-361.
[4] CHEN Xiaofang, QIAN Yingcan, WANG Yalin, YANG Chunhua. Dynamic adjustment interval identification of hydrocracking based on principal component derivative feature clustering[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 81-86.
[5] ZHAO Ri, LIU Liye, LI Junli. Anomaly gamma spectra detection based on principal component analysis and the Mahalanobis distance[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 826-831.
[6] WANG Gaowu, DANG Jianwu, KONG Jiangping. Modeling of the tongue tip in Standard Chinese using MRI[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 158-163.
[7] FENG Hui, SONG Rui, GAO Xiaodong, WU Tongyu, DANG Jianwu. Visualized correction of English monophthongs for Tibetan speakers[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1161-1165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd