Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (11) : 1163-1169     DOI: 10.16511/j.cnki.qhdxxb.2017.26.061
ENVIRONMENTAL SCIENCE AND ENGINEERING |
Environmental impact of Beijing's industrial decentralization based on a discrete choice modeling approach
LI Tiankui1, LIU Yi1, WANG Chaoran1, WANG Zishu1,2
1. School of Environment, Tsinghua University, Beijing 100084, China;
2. Tsinghua Holdings Human Settlements Environment Institute, Beijing 100084, China
Download: PDF(1079 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The ‘Non-Capital Functions’ dispersion policy is significantly affecting the spatial distribution of resources and the environmental in the Beijing-Tianjin-Hebei Region. This study estimates the changes in resource use and emissions at a regional level. The study classifies industrial sectors through a screening analysis of their policies, economics and environmental effects. The Monte Carlo method is used to determine individual firm sizes. A discrete choice model is used with location information and local environmental efficiencies. Relationships between the industrial size and the resource use and emission intensities are used to estimate the environmental impacts. The results show that during "the thirteenth five-year" plan, the industrial output in Beijing will decreases by 7%, while resource use and pollutant emissions will fall by over 9%, which will effectively alleviate water shortages in Beijing. In other cities in the region, the industrial output will rise by 5% on average, far more than the resource use and emissions increases. Various policy recommendations are presented to improve local environmental regulations.
Keywords capital industrial decentralization      industrial reallocation      discrete choice model      environmental impact     
ZTFLH:  X820.3  
Issue Date: 15 November 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Tiankui
LIU Yi
WANG Chaoran
WANG Zishu
Cite this article:   
LI Tiankui,LIU Yi,WANG Chaoran, et al. Environmental impact of Beijing's industrial decentralization based on a discrete choice modeling approach[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1163-1169.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.26.061     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I11/1163
  
  
  
  
  
[1] He C F, Wei Y H D, Xie X Z. Globalization, institutional change, and industrial location:Economic transition and industrial concentration in China[J]. Regional Studies, 2008, 7(42):923-945.
[2] Thun E. Keeping up with the Jones':Decentralization, policy imitation, and industrial development in China[J]. World Development, 2004, 32(8):1289-1308.
[3] Isabel Escalona-Orcao A, Climent-Lopez E A. Factors and limits of interurban industrial decentralization the case of Zaragoza (Spain)[J]. European Urban and Regional Studies, 2012, 19(4):420-433.
[4] 李玲, 陈迅. 重庆劣势产业选择研究[J]. 数学的实践与认识, 2006(8):70-75. LI Ling, CHEN Xun. Study on the selection of inferior position industries in Chongqing[J]. Mathematics in Practice and Theory, 2006(8):70-75. (in Chinese)
[5] Callens I, Tyteca D. Towards indicators of sustainable development for firms:A productive efficiency perspective[J]. Ecological Economics, 1999, 28(1):41-53.
[6] Laursen K. Revealed comparative advantage and the alternatives as measures of international specialization[J]. Eurasian Business Review, 2015, 5(1):99-115.
[7] Levchenko A A, Zhang J. The evolution of comparative advantage:Measurement and welfare implications[J]. Journal of Monetary Economics, 2016, 78:96-111.
url: http://dx.doi.org/10.1016/j.jmoneco.2016.01.005
[8] Gurgul H, Lach ?. Simulating evolution of interindustry linkages in endogenous dynamic IO model with layers of techniques[J]. Metroeconomica, 2016, 67(4):632-666.
[9] Luo J. Which industries to bail out first in economic recession? Ranking US industrial sectors by the Power-of-Pull[J]. Economic Systems Research, 2013, 25(2):157-169.
[10] Nishimizu M, Page J M. Total factor productivity growth, technological progress and technical efficiency change:Dimensions of productivity change in Yugoslavia, 1965-78[J]. The Economic Journal, 1982, 92(368):920-936.
[11] Simon H A, Bonini C P. The size distribution of business firms[J]. The American Economic Review, 1958, 48(4):607-617.
[12] Hausman J, Mcfadden D. Specification tests for the multinomial logit model.[J]. Econometrica, 1984, 52(5):1219-1240.
[13] Kabatek J, Van Soest A, Stancanelli E. Income taxation, labour supply and housework:A discrete choice model for French couples[J]. Labour Economics, 2014, 27:30-43.
url: http://dx.doi.org/10.1016/j.labeco.2014.01.004
[14] Ida T, Goto R. Interdependency among addictive behaviours and time/risk preferences:Discrete choice model analysis of smoking, drinking, and gambling[J]. Journal of Economic Psychology, 2009, 30(4):608-621.
[15] Wang C, Xie D, Liu Y. Regional industrial growth and environmental impacts in the Bohai Sea rim region of China:Uncertainty in location choice[J]. Regional Environmental Change, 2016, 16(5):1363-1374.
[16] Lovreglio R, Borri D, Dell O L, et al. A discrete choice model based on random utilities for exit choice in emergency evacuations[J]. Safety Science, 2014, 62:418-426.
url: http://dx.doi.org/10.1016/j.ssci.2013.10.004
[17] Haaf C G, Michalek J J, Morrow W R, et al. Sensitivity of vehicle market share predictions to discrete choice model specification[J]. Journal of Mechanical Design, 2014, 136(12):121402.
[18] Rasciute S, Pentecost E, Ferrett B. Firm heterogeneity in modelling foreign direct investment location decisions[J]. Applied Economics, 2014, 46(12):1350-1360.
[19] Bodenmann B R, Axhausen K W. Effects and side effects of measures to attract firms-A micro-Simulation study of firm location choice[J]. disP-The Planning Review, 2012, 48(4):14-28.
[20] Jindra B, Hassan S S, Cantner U. What does location choice reveal about knowledge-seeking strategies of emerging market multinationals in the EU?[J]. International Business Review, 2016, 25(1):204-220.
[21] Talluri K, Van Ryzin G. Revenue management under a general discrete choice model of consumer behavior[J]. Management Science, 2004, 50(1):15-33.
[22] Lundvall K, Battese G E. Firm size, age and efficiency:Evidence from Kenyan manufacturing firms[J]. The Journal of Development Studies, 2000, 36(3):146-163.
[23] 北京市统计局. 北京市统计年鉴[EB/OL].[2017-5-10]. http://www.bjstats.gov.cn/nj/main/2015-tjnj/zk/indexch.htm. Bureau of Statistics of Beijing. Beijing Statistical Yearbook[EB/OL].[2017-5-10]. http://www.bjstats.gov.cn/nj/main/2015-tjnj/zk/indexch.htm. (in Chinese)
url: http://www.bjstats.gov.cn/nj/main/2015-tjnj/zk/indexch.htm. bureau of statistics of beijing. beijing statistical yearbook[eb/ol].[2017-5-10]. http://www.bjstats.gov.cn/nj/main/2015-tjnj/zk/indexch.htm. (in chinese)
[24] 中华人民共和国国家统计局. 中国统计年鉴[EB/OL].[2017-5-10]. http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm. National Bureau of Statistics of China. China Statistical Yearbook[EB/OL].[2017-5-10]. http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm. (in Chinese)
url: http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm. national bureau of statistics of china. china statistical yearbook[eb/ol].[2017-5-10]. http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm. (in chinese)
[1] HUAN Ning, YAO Enjian. Advances in intermodal travel behaviour modelling[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1112-1120.
[2] Xiaodong LI,Shu SU,Tianjian HUANG. Health damage assessment model for construction dust[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd