Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (11) : 1228-1232     DOI: 10.16511/j.cnki.qhdxxb.2017.26.064
THERMAL ENGINEERING |
Liquid film model for the flow in a twin-fluid atomization nozzle
ZHU Yule, WU Yuxin, FENG Lele, LÜ Junfu
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1350 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The flow of gas-liquid mixtures in atomization nozzles is generally believed to not be fully developed annular flow but liquid film formation cannot be described accurately by traditional gas-liquid two phase flow models. This paper compares three slip ratio models for annular flow and their predictions of the liquid film thickness and the liquid mass flow rate with experimental data. The non-slip model under predicts the film thickness while the Ishii empirical correlation based on the hypothesis of fully developed annular flow over predicts the film thickness. A slip model was then developed from experimental data based on a non-fully developed annular flow model, the gas-liquid mass flow ratio and the inlet pressure. This model more accurately predicts the flow characteristics and the liquid film thickness in the nozzle than the other models.
Keywords twin-fluid atomization      annular flow      slip ratio      thickness of liquid film     
ZTFLH:  O359+.1  
Issue Date: 15 November 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
ZHU Yule, WU Yuxin, FENG Lele, LÜ Junfu. Liquid film model for the flow in a twin-fluid atomization nozzle[J]. Journal of Tsinghua University(Science and Technology),2017, 57(11): 1228-1232.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.26.064     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I11/1228
  
  
  
  
  
  
  
[1] Lefebvre A H. Atomization and Sprays[M]. New York:Hemisphere Pub Corp, 1989.
[2] Mullinger P J, Chigier N A. The design and performance of internal mixing multijet twin fluid atomizers[J]. Journal of the Institute of Fuel, 1974, 47(393):251-261.
[3] Lefebvre A H, Wang X F, Martin C A. Spray characteristics of aerated-liquid pressure atomizers[J]. Journal of Propulsion and Power, 1988, 4(4):293-298.
[4] Ferreira G, Barreras F, Lozano A, et al. Effect of the inner two-phase flow on the performance of an industrial twin-fluid nozzle with an internal mixing chamber[J]. Atomization & Sprays, 2009, 19(9):873-884.
url: http://dx.doi.org/zation
[5] Kufferath A, Wende B, Leuckel W. Influence of liquid flow conditions on spray characteristics of internal-mixing twin-fluid atomizers[J]. International Journal of Heat & Fluid Flow, 1999, 20(5):513-519.
url: http://dx.doi.org/national Journal of Heat
[6] Chin J S, Lefebvre A H. Flow patterns in internal-mixing, twin-fluid atomizers[J]. Atomization & Sprays, 1993, 3(4):463-475.
url: http://dx.doi.org/zation
[7] Kim S, Kondo S, Nishida K, et al. Effects of mixing chamber geometry and flow on spray characteristics from an internal mixing twin-fluid atomizer[J]. International Journal of Fluid Mechanics Research, 1997, 24(1-3):76-87.
[8] Karnawat J, Kushari A. Controlled atomization using a twin-fluid swirl atomizer[J]. Experiments in Fluids, 2006, 41(4):649-663.
[9] Qian L, Lin J, Xiong H. A fitting formula for predicting droplet mean diameter for various liquid in effervescent atomization spray[J]. Journal of Thermal Spray Technology, 2010, 19(3):586-601.
[10] Sovani S D, Sojka P E, Lefebvre A H. Effervescent atomization[J]. Progress in Energy and Combustion Science, 2001, 27(4):483-521.
[11] Xiong H, Qian L, Lin J. Simulation of droplet-gas flow in the effervescent atomization spray with an impinging plate[J]. Chinese Journal of Chemical Engineering, 2009, 17(1):8-19.
[12] Ishii M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, ANL-77-47[R]. Illinois:Argonne National Lab, 1977.
[13] 刘联胜, 杨华, 吴晋湘, 等. 环状出口气泡雾化喷嘴液膜破碎过程与喷雾特性[J]. 燃烧科学与技术, 2005, 11(2):121-125.LIU Liansheng, YANG Hua, WU Jinxiang, et al. Studies on breakup of liquid sheet and spray characteristics downstream of the annular spout effervescent atomizer[J]. Journal of Combustion Science and Technology, 2005, 11(2):121-125. (in Chinese)
[14] 盛刚浩, 张海滨, 赵中闯, 等. 横向气流中环状流射流液膜的破碎与雾化[J]. 中国科学院大学学报, 2017, 34(2):160-165.SHENG Ganghao, ZHANG Haibin, ZHAO Zhongchuang, et al. Breakup and atomization of annular flow jet in crossflow[J]. Journal of University of Chinese Academy of Science, 2017, 34(2):160-165. (in Chinese)
[15] Rizk N K, Lefebvre A H. The influence of liquid film thickness on airblast atomization[J]. Journal of Engineering for Power, 1980, 102(3):706-710.
[16] 章明川, 吕勇, 王峻晔, 等. Y型喷嘴内部气液两相流动及液膜雾化的数学模型[J]. 燃烧科学与技术, 2000, 6(3):205-209.ZHANG Mingchuan, LÜ Yong, WANG Junye, et al. Mathematical modeling on the gas-liquid two phase flow in the Y-jet nozzle and its atomization process[J]. Journal of Combustion Science and Technology, 2000, 6(3):205-209.(in Chinese)
[17] 赵其寿, 甘晓华. 空气雾化喷嘴内液膜厚度研究[J]. 工程热物理学报, 1985, 6(4):378-384.ZHAO Qishou, GAN Xiaohua. Study on liquid film thickness inside airblast atomizers[J]. Journal of Engineering Thermophysics, 1985, 6(4):378-384. (in Chinese)
[1] ZHAO Fulong, ZHAO Chenru, BO Hanliang. Single droplet phase transformation model during motion[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1213-1219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd