Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (4) : 438-444     DOI: 10.16511/j.cnki.qhdxxb.2018.21.010
AUTOMOTIVE ENGINEERING |
Overview of deep learning intelligent driving methods
ZHANG Xinyu1, GAO Hongbo2, ZHAO Jianhui3, ZHOU Mo2
1. Information Technology Center, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;
3. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Download: PDF(2102 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This paper introduces target recognition and detection methods based on the convolutional neural network (CNN) model, the improved regions with convolutional neural network (R-CNN) and the task-assistant convolutional neural network (TA-CNN) model for pedestrian detection. This paper also describes stereo matching based on a deep learning model for stereo matching using the Siamese network. Multi-source data fusion is also introduced based on a vision sensor, a radar sensor and a camera using a deep learning network. The CNN is used for end-to-end horizontal and vertical control of autonomous vehicles. Deep learning is widely used in the perception level, decision-making level and control level in automatic driving systems to continuously improve the perception, detection, decision-making and control accuracy. Analyses show that deep learning will improve of autonomous driving systems.
Keywords computer vision      deep learning      autonomous vehicle      sensor     
ZTFLH:  TP399  
Issue Date: 15 April 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xinyu
GAO Hongbo
ZHAO Jianhui
ZHOU Mo
Cite this article:   
ZHANG Xinyu,GAO Hongbo,ZHAO Jianhui, et al. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 438-444.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.21.010     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I4/438
  
  
  
  
  
  
  
[1] DÖRR D, GRABENGIESSER D, GAUTERIN F. Online driving style recognition using fuzzy logic[C]//Proceedings of the 17th International Conference on Intelligent Transportation Systems (ITSC). Qingdao, China:IEEE, 2014:1021-1026.
[2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005, 1:886-893.
[3] WU B, NEVATIA R. Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors[C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China:IEEE, 2005, 1:90-97.
[4] GAVRILA D M. A Bayesian, exemplar-based approach to hierarchical shape matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8):1408-1421.
[5] MU Y D, YAN S C, LIU Y, et al. Discriminative local binary patterns for human detection in personal album[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA:IEEE, 2008:1-8.
[6] WANG X Y, HAN T X, YAN S C. An HOG-LBP human detector with partial occlusion handling[C]//Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009:32-39.
[7] TUZEL O, PORIKLI F, MEER P. Pedestrian detection via classification on Riemannian manifolds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(10):1713-1727.
[8] WATANABE T, ITO S, YOKOI K. Co-occurrence histograms of oriented gradients for human detection[J]. IPSJ Transactions on Computer Vision and Applications, 2010, 2:39-47.
[9] DOLLAR P, TU Z W, PERONA P, et al. Integral channel features[C]//Proceedings of the British Machine Vision Conference. London, UK:BMVC, 2009:1-11.
[10] GAO W, AI H Z, LAO S H. Adaptive Contour Features in oriented granular space for human detection and segmentation[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA:IEEE, 2009:1786-1793.
[11] LIU Y Z, SHAN S G, ZHANG W C, et al. Granularity-tunable gradients partition (GGP) descriptors for human detection[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA:IEEE, 2009:1255-1262.
[12] WU J X, GEYER C, REHG J M. Real-time human detection using contour cues[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China:IEEE, 2011:860-867.
[13] WALK S, MAJER N, SCHINDLER K, et al. New features and insights for pedestrian detection[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010:1030-1037.
[14] PLÖCHL M, EDELMANN J. Driver models in automobile dynamics application[J]. Vehicle System Dynamics, 2007, 45(7-8):699-741.
[15] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE, 2014:580-587.
[16] WALLACE B, GOUBRAN R, KNOEFEL F, et al. Measuring variation in driving habits between drivers[C]//Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications. Lisboa, Portugal:IEEE, 2014:1-6.
[17] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International conference on Computer Vision. Santiago, Chile:IEEE, 2015:1440-1448.
[18] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[19] TIAN Y L, LUO P, WANG X G, et al. Pedestrian detection aided by deep learning semantic tasks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015:5079-5087.
[20] LUO L H. Adaptive cruise control design with consideration of humans' driving psychology[C]//Proceedings of the 11th World Congress on Intelligent Control and Automation. Shenyang, China:IEEE, 2014:2973-2978.
[21] PACHECO J E, LÓPEZ E. Monitoring driving habits through an automotive CAN network[C]//Proceedings of the 23rd International Conference on Electronics, Communications and Computing. Cholula, Mexico:IEEE, 2013:138-143.
[22] MVHLMANN K, MAIER D, HESSER J, et al. Calculating dense disparity maps from color stereo images, an efficient implementation[J]. International Journal of Computer Vision, 2002, 47(1-3):79-88.
[23] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005, 1:539-546.
[24] LUO W J, SCHWING A G, URTASUN R. Efficient deep learning for stereo matching[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:5695-5703.
[25] BUTAKOV V, IOANNOU P. Driving autopilot with personalization feature for improved safety and comfort[C]//Proceedings of the 18th International Conference on Intelligent Transportation Systems. Las Palmas, Spain:IEEE, 2015:387-393.
[26] ALJAAFREH A, ALSHABATAT N, NAJIM AL-DIN M S. Driving style recognition using fuzzy logic[C]//Proceedings of the 2012 IEEE International Conferenceon Vehicular Electronics and Safety. Istanbul, Turkey:IEEE, 2012:460-463.
[27] JOHNSON D A, TRIVEDI M M. Driving style recognition using a smartphone as a sensor platform[C]//Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems. Washington, DC, USA:IEEE, 2011:1609-1615.
[28] SCHLOSSER J, CHOW C K, KIRA Z. Fusing LIDAR and images for pedestrian detection using convolutional neural networks[C]//Proceedings of the2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden:IEEE, 2016:2198-2205.
[29] VAN LY M, MARTIN S, TRIVEDI M M. Driver classification and driving style recognition using inertial sensors[C]//Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV). Gold Coast, QLD, Australia:IEEE, 2013:1040-1045.
[30] POMERLEAU D A. ALVINN:An autonomous land vehicle in a neural network[C]//Advances in Neural Information Processing Systems. San Francisco, CA, USA:ACM, 1989:305-313.
[31] BOJARSKI M, DEL TESTA D, DWORAKOWSKI D, et al. End to end learning for self-driving cars[J/OL]. (2016-04-25). http://arxiv.org/pdf/1604.07316.pdf.
[32] CHEN C Y, SEFF A, KORNHAUSER A, et al. DeepDriving:Learning affordance for direct perception in autonomous driving[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:2722-2730.
[1] HUANG Ben, KANG Fei, TANG Yu. A real-time detection method for concrete dam cracks based on an object detection algorithm[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1078-1086.
[2] MIAO Xupeng, ZHANG Minxu, SHAO Yingxia, CUI Bin. PS-Hybrid: Hybrid communication framework for large recommendation model training[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1417-1425.
[3] LI Yanlin, QIN Benke, BO Hanliang. Analytical model and verification of capacitance rod position measurement sensor[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1636-1644.
[4] MEI Jie, LI Qingbin, CHEN Wenfu, WU Kun, TAN Yaosheng, LIU Chunfeng, WANG Dongmin, HU Yu. Overtime warning of concrete pouring interval based on object detection model[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 688-693.
[5] GUAN Zhibin, WANG Xiaomeng, XIN Wei, WANG Jiajie. Data generation and annotation method for source code defect detection[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1240-1245.
[6] HAN Kun, PAN Haiwei, ZHANG Wei, BIAN Xiaofei, CHEN Chunling, HE Shuning. Alzheimer's disease classification method based on multi-modal medical images[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 664-671,682.
[7] WANG Zhiguo, ZHANG Yujin. Anomaly detection in surveillance videos: A survey[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 518-529.
[8] JIANG Wenbin, WANG Hongbin, LIU Pai, CHEN Yuhao. Hybrid computational strategy for deep learning based on AVX2[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 408-414.
[9] YU Chuanming, YUAN Sai, HU Shasha, AN Lu. Deep learning multi-language topic alignment model across domains[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 430-439.
[10] SONG Xinrui, ZHANG Xianqi, ZHANG Zhan, CHEN Xinhao, LIU Hongwei. Multi-sensor data fusion for complex human activity recognition[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 814-821.
[11] PANG Qiqi, ZHANG Lixia, HE Yichao, GONG Zheng, FENG Zhanzong, CHEN Yalong, WEI Yintao, DU Yongchang. Verification platform for magnetorheological semi-active suspension control algorithm[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 567-574.
[12] SUN Bowen, ZHU Zhiming, GUO Jichang, ZHANG Tianyi. Detection algorithms and optimization of image processing for visual sensors using combined laser structured light[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 445-452.
[13] ZHANG Jiwen, SONG Libin, XU Junjie, SHI Xunlei, LIU Li. Unpredefined ball detection algorithm for humanoid soccer robots[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(4): 298-305.
[14] XIN Zhe, ZHANG Xiaoxue, CHEN Hailiang, SHAO Mingxi, XU Chenxiang, LI Shengbo. Bounded stabilizing control for fuel economy-oriented heterogeneous vehicle platoon[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 228-235.
[15] ZHANG Sicong, XIE Xiaoyao, XU Yang. Intrusion detection method based on a deep convolutional neural network[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 44-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd