AUTOMOTIVE ENGINEERING |
|
|
|
|
|
Automatic driving control based on time delay dynamic predictions |
ZHAO Jianhui1, GAO Hongbo2, ZHANG Xinyu3, ZHANG Yinglin4 |
1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; 2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China; 3. Information Technology Center, Tsinghua University, Beijing 100084, China; 4. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410000, China |
|
|
Abstract Signal delays, limited frontal view distances and other factors during self-driving limit the ability of self-driving cars to accurately track their planning trajectory. A simplified bicycle model was used to optimize a classical pure tracking model in an automatic driving control method based on dynamic delay prediction. A vehicle kinematics model is used to predict the vehicle motion direction and position after the delay. The optimal front sight distance is obtained according to difference between driving the actual direction and the tracking direction. MATLAB simulations show that this algorithm can track the planning trajectory at a maximum speed of 7 m/s with the average error controlled to within 0.3 m. Thus, the tracking performance is better than the traditional pure pursuit method.
|
Keywords
intelligent driving
on-board camera
complex traffic environment
|
|
Issue Date: 15 April 2018
|
|
|
[1] PAPADIMITRATOS P, DE LA FORTELLE A, EVENSSEN K, et al. Vehicular communication systems:Enabling technologies, applications, and future outlook on intelligent transportation[J]. IEEE Communications Magazine, 2009, 47(11):84-95. [2] PLÖCHL M, EDELMANN J. Driver models in automobile dynamics application[J]. Vehicle System Dynamics, 2007, 45(7-8):699-741. [3] CRAWFORD D W, TALAMANTES I D, EMPTAGE T, et al. Interactive lean sensor for controlling a vehicle motion system and navigating virtual environments:US Patent 9120021[P]. 2015-09-01. [4] LUO L H. Adaptive cruise control design with consideration of humans' driving psychology[C]//Proceedings of the 11th World Congress on Intelligent Control and Automation. Shenyang, China:IEEE, 2014:2973-2978. [5] BELLA F. Driving simulator for speed research on two-lane rural roads[J]. Accident Analysis & Prevention, 2008, 40(3):1078-1087. [6] SETLUR P, WAGNER J R, DAWSON D M, et al. A trajectory tracking steer-by-wire control system for ground vehicles[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1):76-85. [7] GUO L, GE P S, YUE M, et al. Lane changing trajectory planning and tracking controller design for intelligent vehicle running on curved road[J]. Mathematical Problems in Engineering, 2014, 2014:478573. [8] YI J G, SONG D Z, ZHANG J J, et al. Adaptive trajectory tracking control of skid-steered mobile robots[C]//Proceedings of the 2007 IEEE International Conference on Robotics and Automation. Roma, Italy:IEEE, 2007:2605-2610. [9] LI S T, WEI W, WANG R B. Study on control structure for the automated guided vehicle base on visual navigation[C]//Proceedings of the 27th Chinese Control and Decision Conference. Qingdao, China:IEEE, 2015:2515-2518. [10] ZHANG M, MA W Q, LIU Z X, et al. Fuzzy-adaptive control method for off-road vehicle guidance system[J].Mathematical and Computer Modelling, 2013, 58(3-4):551-555. [11] ELBANHAWI M, SIMIC M, JAZAR R. Receding horizon lateral vehicle control for pure pursuit path tracking[J]. Journalof Vibration and Control, 2018, 24(3):619-642. [12] 韩科立, 朱忠祥, 毛恩荣, 等. 基于最优控制的导航拖拉机速度与航向联合控制方法[J]. 农业机械学报, 2013, 44(2):165-170. HAN K L, ZHU Z X, MAO E R, et al. Joint control method of speed and heading of navigation tractor based on optimal control[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2):165-170. (in Chinese) [13] YEU T K, PARK S J, HONG S, et al. Path tracking using vector pursuit algorithm for tracked vehicles driving on the soft cohesive soil[C]//Proceedings of the 2006 SICE-ICASE International Joint Conference. Busan, South Korea:IEEE, 2006:2781-2786. [14] KISE M, NOGUCHI N, ISHⅡ K, et al. Development of the agricultural autonomous tractor with an RTK-GPS and a fog[J]. IFAC Proceedings Volumes, 2001, 34(19):99-104. [15] 陈军, 朱忠祥, 鸟巢谅, 等. 拖拉机沿曲线路径的跟踪控制[J]. 农业工程学报, 2006, 22(11):108-111. CHEN J, ZHU Z X, RYO T, et al. On-tracking control of tractor running along curved paths[J]. Transactions of the CSAE, 2006, 22(11):108-111. (in Chinese) [16] COULTER R C. Implementation of the pure pursuit path tracking algorithm:Technical Report, CMU-RI-TR-92-01[R]. Pittsburgh, PA:Robotics Institute, Carnegie Mellon University, 1992. [17] KELLY A. A feedforward control approach to the local navigation problem for autonomous vehicles:Technical Report, CMU-RI-TR-94-17[R]. Pittsburgh, PA:Robotics Institute, Carnegie Mellon University, 1994. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|