Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (8) : 698-702     DOI: 10.16511/j.cnki.qhdxxb.2018.21.016
COMPUTER SCIENCE AND TECHNOLOGY |
Variational autoencoder with side information in recommendation systems
LIU Weidong, LIU Yaning
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Download: PDF(915 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The variational autoencoder (VAE) unsupervised learning method can provide excellent results in recommendation systems. Recommendation systems seek to accurately identify a missing value with the VAE learning a latent factor from the input and then predicting when to use this for reconstructing the result. Side information was added to the VAE to improve the predictions with tests on datasets including MovieLens and grades data showing that it can significantly improve the prediction accuracy by up to 31% with enough side information with the grades dataset.
Keywords recommendation systems      variational inference      autoencoder      collaborative filtering     
Issue Date: 15 August 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Weidong
LIU Yaning
Cite this article:   
LIU Weidong,LIU Yaning. Variational autoencoder with side information in recommendation systems[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 698-702.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.21.016     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I8/698
  
  
  
  
[1] NELWAMONDO F V, MOHAMED S, MARWALA T. Missing data:A comparison of neural network and expectation maximisation techniques[J]. Current Science, 2007, 93(11):1514-1521.
[2] RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3):56-58.
[3] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[J]. Uncertainty in Artificial Intelligence, 1998, 98(7):43-52.
[4] HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems (TOIS), 2004, 22(1):5-53.
[5] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York:ACM, 2001:285-295.
[6] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37.
[7] SALAKHUTDINOV R, MNIH A, HINTON G. Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning. New York:ACM, 2007:791-798.
[8] STRUB F, GAUDEL R, MARY J. Hybrid recommender system based on autoencoders[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York:ACM, 2016:11-16.
[9] OUYANG Y, LIU W, RONG W, et al. Autoencoder-based collaborative filtering[C]//Proceedings of the 21st International Conference on Neural Information Processing. Berlin:Springer, 2014:284-291.
[10] SEDHAIN S, MENON A K, SANNER S, et al. Autorec:Autoencoders meet collaborative filtering[C]//Proceedings of the 24th International Conference on World Wide Web. New York:ACM, 2015:111-112.
[11] SUZUKI Y, OZAKI T. Stacked denoising autoencoder-based deep collaborative filtering using the change of similarity[C]//Proceedings of the 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA). Piscataway:IEEE, 2017:498-502.
[12] LI X P, SHE J. Collaborative variational autoencoder for recommender systems[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2017:305-314.
[13] BRAND M. Incremental singular value decomposition of uncertain data with missing values[C]//Proceedings of the 7th European Conference on Computer Vision. Berlin:Springer, 2002:707-720.
[14] SØNDERBY C K, RAIKO T, MAALØE L, et al. Ladder variational autoencoders[C]//Proceedings of the 29th Annual Conference on Neural Information Processing Systems. Cambridge, Massachusetts:MIT Press, 2016:3738-3746.
[15] WANG H, SHI X J, YEUNG D Y. Collaborative recurrent autoencoder:Recommend while learning to fill in the blanks[C]//Proceedings of the 29th Annual Conference on Neural Information Processing Systems. Cambridge, Massachusetts:MIT Press, 2016:415-423.
[1] YANG Bo, QIU Lei, WU Shu. A collaborative filtering model based on heterogeneous graph neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1339-1349.
[2] JIA Fan, KANG Shuya, JIANG Weiqiang, WANG Guangtao. Multi-user recommendation algorithm based on vulnerability similarity[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1399-1407.
[3] ZHAO Zeheng, ZHAO Jinsong. Remaining useful life prediction of fan belts based on destructive experiments and autoencoders[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1458-1466.
[4] PING Guolou, ZENG Tingyu, YE Xiaojun. Unsupervised network traffic anomaly detection based on score iterations[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 819-824.
[5] LIU Shudong, ZHANG Jiani, CHEN Xu. Review-aware heterogeneous variational autoencoder recommendation model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 88-97.
[6] ZHANG Min, DING Biyuan, MA Weizhi, TAN Yunzhi, LIU Yiqun, MA Shaoping. Hybrid recommendation approach enhanced by deep learning[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1014-1021.
[7] Qiang ZHU, Yuqiang SUN. Collaborative filtering recommender method based on trust[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(3): 360-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd