Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (1) : 50-54     DOI: 10.16511/j.cnki.qhdxxb.2018.22.008
AUTOMOTIVE ENGINEERING |
Crack detection algorithm for fluorescent magnetic particle inspection based on shape and texture features
MA Tao1, SUN Zhenguo1,2, CHEN Qiang1,2
1. Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
Download: PDF(1945 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This paper introduces an algorithm based on shape and texture features to recognize cracks from fluorescent magnetic particle inspection images. The algorithm detects ridge lines in the images that represent candidate cracks, extracts the local texture features of each ridge point using a scale-invariant feature transform (SIFT) descriptor, and averages those from the same line to form the texture features of the ridge line. A support vector machine classifier is then used to detect the cracks. Tests show that this algorithm more accurately distinguishes the cracks from non-defects than conventional shape-based algorithms or texture-based algorithms. The combined shape and local textures improve the crack detection accuracy.
Keywords fluorescent magnetic particle inspection      image detection      texture feature     
ZTFLH:  TG115.28  
Issue Date: 15 January 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Tao
SUN Zhenguo
CHEN Qiang
Cite this article:   
MA Tao,SUN Zhenguo,CHEN Qiang. Crack detection algorithm for fluorescent magnetic particle inspection based on shape and texture features[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 50-54.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.22.008     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I1/50
  
  
  
  
  
  
  
[1] 赵万民, 曾德文. 荧光磁粉探伤缺陷识别系统的研究现状与关键技术[J]. 铁道机车车辆工人, 2008(8):1-4. ZHAO W M, ZENG D W. Research status and key technologies of defect recognition system for fluorescent magnetic particle inspection[J]. Railway Locomotive and Rolling Stock Workers, 2008(8):1-4. (in Chinese)
[2] 康健, 杜向党, 白龙. 火车轮对荧光磁粉探伤图像的裂纹识别技术研究[J]. 机械与电子, 2013(12):44-46.KANG J, DU X D, BAI L. Image recognition technology research of train wheel based on phosphor magnetic powder flaw detection[J]. Machinery and Electronics, 2013(12):44-46. (in Chinese)
[3] 李远江, 张华, 王姮, 等. 基于支持向量机的磁粉探伤智能识别算法[J]. 西南科技大学学报, 2015, 30(1):66-70.LI Y J, ZHANG H, WANG H, et al. Intelligent recognition algorithm based on support vector machine magnetic particle detection[J]. Journal of Southwest University of Science and Technology, 2015, 30(1):66-70. (in Chinese)
[4] MAHENDRA A, STOLZ C, MERIAUDEAU F, et al. Automated inspection of tubular material based on magnetic particle inspection[C]//BINGHAM P R, LAM E Y. Image processing:Machine vision applications V:Proceedings of SPIE. Bellingham, USA:SPIE, 2012:830007.
[5] 张静, 杨薛涛, 王姮, 等. 荧光磁粉探伤智能图像识别技术研究[J]. 西南科技大学学报, 2014, 29(2):82-86.ZHANG J, YANG X T, WANG H, et al. Research of intelligent image recognition technology in fluorescent magnetic particle flaw detection[J]. Journal of Southwest University of Science and Technology, 2014, 29(2):82-86. (in Chinese)
[6] 王姮, 卜燕, 张华, 等. 基于分形维数的磁痕图像缺陷检测[J]. 计算机应用研究, 2015, 32(2):603-605.WANG H, BU Y, ZHANG H, et al. Defect detection of magnetic particle indication image based on fractal dimension[J]. Application Research of Computers, 2015, 32(2):603-605. (in Chinese)
[7] STEGER C. An unbiased detector of curvilinear structures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(2):113-125.
[8] STEGER C. Unbiased extraction of lines with parabolic and Gaussian profiles[J]. Computer Vision and Image Understanding, 2013, 117(2):97-112.
[9] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
[10] 谢凌曦. 基于局部特征的图像表示模型理论与实践[D]. 北京:清华大学, 2015.XIE L X. Image representation models based on local features:Theory and practice[D]. Beijing:Tsinghua University, 2015.
[11] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[12] MA T, SUN Z G, ZHANG W Z, et al. A machine vision assisted system for fluorescent magnetic particle inspection of railway wheelsets[C]//CHIMENTI D E, BOND L J. AIP conference proceedings:Volume 1706. Melville, USA:AIP Publishing, 2016:150003.
[1] LI Cong, MA Xun, YANG Rui, ZHANG Hui. Characterization of n-heptane annular pool fires based on flame shape and texture features[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 502-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd