Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (8) : 732-739     DOI: 10.16511/j.cnki.qhdxxb.2018.22.025
COMPUTER SCIENCE AND TECHNOLOGY |
Neighborhood density grid clustering and its applications
SUO Mingliang, ZHOU Ding, AN Ruoming, LI Shunli
School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
Download: PDF(4356 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The clustering data analysis tool plays a significant role in various fields such as pattern recognition, bibliometrics and fault diagnosis. This paper describes a clustering approach based on neighborhood relationships, local densities and spatial grid partitions. The time complexity of this algorithm is reduced using a spatial grid with the clustering elements searched using neighborhood density relationships in the grid space. Cluster centers are then selected automatically using the maximum relative distance and the maximum relative local density. Tests on artificial data indicate that neighborhood density grid clustering can automatically cluster data and effectively process data with arbitrary shapes. Comparisons using regional recognition datasets demonstrate that this method is more suitable for clustering complex data with unusual shapes.
Keywords clustering      grid partition      neighborhood      density      arbitrary shape      region recognition     
Issue Date: 15 August 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUO Mingliang
ZHOU Ding
AN Ruoming
LI Shunli
Cite this article:   
SUO Mingliang,ZHOU Ding,AN Ruoming, et al. Neighborhood density grid clustering and its applications[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 732-739.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.22.025     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I8/732
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
[2] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA:University of California Press, 1967:281-297.
[3] PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2009, 36(2):3336-3341.
[4] ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH:An efficient data clustering method for very large databases[J]. ACM SIGMOD Record, 1996, 25(2):103-114.
[5] BEZDEK J C, EHRLICH R, FULL W. FCM:The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2-3):191-203.
[6] BABUKA R, VAN DER VEEN P J, KAYMAK U. Improved covariance estimation for Gustafson-Kessel clustering[C]//Proceedings of the 2002 IEEE International Conference on Fuzzy Systems. Honolulu, USA, 2002:1081-1085.
[7] BERCHTOLD M, RIEDEL T, DECKER C, et al. Gath-Geva specification and genetic generalization of Takagi-Sugeno-Kang fuzzy models[C]//Proceedings of the 2008 IEEE International Conference on Systems, Man and Cybernetics. Singapore, 2008:595-600.
[8] JIANG B, PEI J, TAO Y F, et al. Clustering uncertain data based on probability distribution similarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(4):751-763.
[9] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, USA, 1996:226-231.
[10] ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS:Ordering points to identify the clustering structure[J]. ACM SIGMOD Record, 1999, 28(2):49-60.
[11] WANG W, YANG J, MUNTZ R R. STING:A statistical information grid approach to spatial data mining[C]//Proceedings of the 23rd International Conference on Very Large Data Bases. Athens, Greece:Morgan Kaufmann Publishers, 1997:186-195.
[12] SHEIKHOLESLAMI G, CHATTERJEE S, ZHANG A D. WaveCluster:A multi-resolution clustering approach for very large spatial databases[C]//Proceedings of the 24th International Conference on Very Large Data Bases. New York, USA:Morgan Kaufmann Publishers, 1998:428-439.
[13] LIU H P, SUN J, WU H, et al. High resolution sonar image segmentation by PSO based fuzzy cluster method[C]//Proceedings of the 4th International Conference on Genetic and Evolutionary Computing. Shenzhen, China, 2010:18-21.
[14] XU D K, TIAN Y J. A comprehensive survey of clustering algorithms[J]. Annals of Data Science, 2015, 2(2):165-193.
[15] MOPSI. Mopsi data:Locations[DB/OL]. (2012-03-07)[2017-12-25]. http://cs.uef.fi/mopsi/data/.
[16] SUO M L, ZHU B L, ZHOU D, et al. Neighborhood grid clustering and its application in fault diagnosis of satellite power system[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018. DOI:10.1177/0954410017751991.
[1] ZHAO Xingwang, HOU Zhedong, YAO Kaixuan, LIANG Jiye. Two-stage fusion multiview graph clustering based on the attention mechanism[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 1-12.
[2] WANG Liping, SHI Huijie, WANG Dong. Clustering and selection method of microservices for intelligent manufacturing[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 109-116.
[3] HU Yuwen, YAN Xiao, GONG Houjun, WANG Yanlin, ZHOU Lei. Numerical study on flow instability in parallel rectangular channels with coupled heat transfer[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1257-1263.
[4] DU Yuji, FU Ming, DUANMU Weike, HOU Longfei, LI Jing. Risk assessment method of gas pipeline networks based on fuzzy analytic hierarchy process and improved coefficient of variation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 941-950.
[5] LI Congjian, GAO Hang, LIU Yi. Fast reconstruction of a wind field based on numerical simulation and machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 882-887.
[6] SUN Haobo, YANG Kaiming, ZHU Yu, LU Sen. Modal parameter estimates for a magnetic levitation planar motor based on density clustering[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 33-43.
[7] YU Yong, WANG Yinggang, LUO Zhengguo, YANG Yan, WANG Xinkai, GAO Tao, YU Qian. Link prediction algorithm based on clustering coefficient and node centrality[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 98-104.
[8] JIN jin, LIN Ziqiao, YAN Jian, KUANG Linling. Calculational method for assessing the probability distribution of an equivalent power flux density[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 172-178.
[9] HE Chen, YAO Chi, SHAO Yulong, HUANG Fan, ZHOU Chuangbing. Effective permeability of three-dimensional fractured rock with low fracture densities[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 827-832.
[10] ZHENG Hongwei, MENG Guangwei, LI Feng, HUANG Tao, GUO Yaming, XUAN Mohan. Reliability analysis of the roller base of a counter-roller spinning machine based on the maximum entropy method[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1289-1294.
[11] XU Li, GUO Runhua, PENG Huiting, SHI Pengcheng. Three-dimensional laser profilometer survey system of pavement slip characteristics[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1202-1211.
[12] JIN Xuhong, HUANG Fei, CHENG Xiaoli, WANG Qiang, WANG Bing. Atmospheric drag on satellites flying in lower low-earth orbit[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 219-226.
[13] FAN Le, WANG Yanyu, ZHANG Jingyan, WEI Yayun. Safety resilience promotion strategies for mountainous neighborhoods in southwestern China based on crowd evacuation behavior[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 32-40.
[14] GUO Hongxian, LI Dongrun, MA Ruinan, CHENG Xiaohui. Oedometer test of calcareous sands solidified using the MICP mixing method[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 593-600.
[15] XIAO Xi, XU Chen. Speech feature fusion algorithm based on acoustic state likelihood and supervised state modelling[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 476-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd