Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (9) : 773-780     DOI: 10.16511/j.cnki.qhdxxb.2018.22.044
AUTOMATION |
Survey on light-field displays based on 3D object reconstructions
TAN Qirui1, LU Haiming1, LU Zengxiang2, JI Yindong1
1. Research Institute of Information Technology, Tsinghua University, Beijing 100084, China;
2. Beijing Novel-SuperTV Digital TV Technology Co., Ltd., Beijing 100085, China
Download: PDF(9609 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Present 3D displays, such as parallax barrier displays, lenticular lens displays, multi-projection displays, and scanning stereoscopic displays, mimic human eyes to obtain 3D images using binocular parallax and persistence of vision. However, locating the 3D images on 2D planes instead of reconstructing the 3D object losses the depth information and causes the vergence-accommodation conflict. 3D objects can be reconstructed using volumetric and holographic displays. However, these require processing of a large amount of data so there are technical limitations due to computing speeds and transmission rates. This paper introduces light-field displays based on 3D object reconstructions. The 3D object is reconstructed using the light field, such as the stacked light field display, shutter light field display, integrated imaging display, or vector light field display. The principles and characteristics of the light field displays are analyzed with the vector light field display having excellent prospects for future development.
Keywords light field displays      3D object reconstruction      focus-convergence      virtual reality     
Issue Date: 19 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Qirui
LU Haiming
LU Zengxiang
JI Yindong
Cite this article:   
TAN Qirui,LU Haiming,LU Zengxiang, et al. Survey on light-field displays based on 3D object reconstructions[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(9): 773-780.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.22.044     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I9/773
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] SHIBATA T, KIM J, HOFFMAN D M, et al. Visual discomfort with stereo displays:Effects of viewing distance and direction of vergence-accommodation conflict[J]. Proceedings of SPIE, 2011, 7863:78630P-1-78630P-9.
[2] KIM J, KANE D, BANKS M S. Visual discomfort and the temporal properties of the vergence-accommodation conflict[J]. Proceedings of SPIE, 2012, 8288:828811.
[3] KIM J, KANE D, BANKS M S. The rate of change of vergence-accommodation conflict affects visual discomfort[J]. Vision Research, 2014, 105:159-165.
[4] YU X B, SANG X Z, XING S J, et al. Natural three-dimensional display with smooth motion parallax using active partially pixelated masks[J]. Optics Communications, 2014, 313:146-151.
[5] 夏振平, 李晓华, 陈磊, 等. 基于双目视差的立体显示运动模糊评价方法研究[J]. 光学学报, 2015, 35(1):145-151. XIA Z P, LI X H, CHEN L, et al. Study on evaluation of motion blur in binocular parallax based stereoscopic displays[J]. Acta Optica Sinica, 2015, 35(1):145-151. (in Chinese)
[6] VAN BERKEL C, CLARKE J A. Characterization and optimization of 3D-LCD module design[J]. Proceedings of the SPIE, 1997, 3012:179-186.
[7] MATUSIK W, PFISTER H. 3D TV:A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes[J]. ACM Transactions on Graphics, 2004, 23(3):814-824.
[8] NAGO N, SHINOZAKI Y, TAKAKI Y. SMV256:Super multiview display with 256 viewpoints using multiple projections of lenticular displays[J]. Proceedings of SPIE, 2010, 7524(1):75241S-1.
[9] UCHIDA S, TAKAKI Y. 360-Degree three-dimensional table-screen display using small array of high-speed projectors[J]. Proceedings of SPIE, 2012, 8288:82880D.
[10] YENDO T, FUJⅡ T, TANIMOTO M, et al. The Seelinder:Cylindrical 3D display viewable from 360 degrees[J]. Journal of Visual Communication and Image Representation, 2010, 21(5-6):586-594.
[11] YOSHIDA H, MAEDA T, SHIBATA S. Three dimensional video display device:WO, US9047793. 2015.
[12] XIA X, LIU X, LI H, et al. A 360-degree floating 3D display based on light field regeneration[J]. Optics Express, 2013, 21(9):11237-11247.
[13] SULLIVAN A. DepthCube solid-state 3D volumetric display[J]. Proceedings of SPIE, 2004, 5291(1):279-284.
[14] CHUN W S, NAPOLI J, COSSAIRT O S, et al. Spatial 3-D infrastructure:Display-independent software framework, high-speed rendering electronics, and several new displays[J]. Proceedings of SPIE, 2005, 5664:302-312.
[15] KLUG M, BURNETT T, FANCELLO A, et al. 32.4:A scalable, collaborative, interactive light-field display system[J]. SID, 2013, 44(1):412-415.
[16] KOZACKI T. On resolution and viewing of holographic image generated by 3D holographic display[J]. Optics Express, 2010, 18(26):27118-27129.
[17] ROSEN J, KATZ B, BROOKER G. Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms[J]. 3D Research, 2010, 1(1):28-35.
[18] WETZSTEIN G, LANMAN D, HEIDRICH W, et al. Layered 3D:Tomographic image synthesis for attenuation-based light field and high dynamic range displays[J]. ACM Transactions on Graphics, 2011, 30(4):1-12.
[19] TENG D D, LIU L L. P-95:Full resolution 3D display on computer screen free from accommodation-convergence conflict[J]. SID, 2017, 48(1):1607-1609.
[20] EL-GHOROURY H S, ALPASLAN Z Y. Quantum photonic imager (QPI):A new display technology and its applications[C]//Proceedings of the International Display Workshops. Niigata, Japan, 2014:1292-1295.
[21] GERSHUN A. The light field[J]. Journal of Mathematics and Physics, 1939, 18(1-4):51-151.
[22] ADELSON E H, BERGEN J R. The plenoptic function and the elements of early vision[M]//LANDY M, MOVSHON J A, eds. Computational models of visual processing. Cambridge, USA:MIT Press, 1991:3-20.
[23] LEVOY M, HANRAHAN P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New Orleans, USA, 1996:31-42.
[24] LANMAN D, WETZSTEIN G, HIRSCH M, et al. Polarization fields:Dynamic light field display using multi-layer LCDs[J]. ACM Transactions on Graphics, 2011, 30(6):1-10.
[25] CHEN D, SANG X Z, YU X B, et al. Performance improvement of compressive light field display with the viewing-position-dependent weight distribution[J]. Optics Express, 2016, 24(26):29781-29793.
[26] HUANG F C, CHEN K, WETZSTEIN G. The light field stereoscope:Immersive computer graphics via factored near-eye light field displays with focus cues[J]. ACM Transactions on Graphics, 2015, 34(4):60.
[27] 丁俊. 基于多层液晶的近眼三维显示研究[D]. 杭州:浙江大学, 2016. DING J. The research of near-eye 3D displays based on multi-layer LCDs[D]. Hangzhou, China:Zhejiang University, 2016. (in Chinese)
[28] 苏忱, 李海峰. 应用于混合现实的光场三维显示研究综述[J]. 计算机辅助设计与图形学学报, 2016, 28(6):905-912. SU C, LI H F. Survey on light field 3D display applied to mixed reality[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6):905-912. (in Chinese)
[29] HONG J, KIM Y, CHOI H J, et al. Three-dimensional display technologies of recent interest:Principles, status, and issues[J]. Applied Optics, 2011, 50(34):87-115.
[30] GENG J. Three-dimensional display technologies[J]. Advances in Optics and Photonics, 2013, 5(4):456-535.
[31] LIU L L, PANG Z Y, TENG D D. Super multi-view three-dimensional display technique for portable devices[J]. Optics Express, 2016, 24(5):4421-4430.
[32] SUN D E, WANG C X, TENG D D, et al. Three-dimensional display on computer screen free from accommodation-convergence conflict[J]. Optics Communications, 2017, 390:36-40.
[33] LIPPMANN G. Épreuves réversibles donnant la sensation du relief[J]. Journal De Physique Théorique et Appliquée, 1908, 7(1):821-825.
[34] LEE B, PARK J H, MIN S W. Three-dimensional display and information processing based on integral imaging[M]//POON T C, ed. Digital holography and three-dimensional display. Boston, USA:Springer, 2006:333-378.
[35] SHIN D H, KIM E S, LEE B. Computational reconstruction of three-dimensional objects in integral imaging using lenslet array[J]. Japanese Journal of Applied Physics, 2005, 44(11):7735-8259.
[36] KIM Y, PARK J H, MIN S W, et al. Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array[J]. Applied Optics, 2005, 44(4):546-552.
[37] SHIN D H, LEE B, KIM E S. Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens[J]. Applied Optics, 2006, 45(28):7375-7381.
[38] PARK G, HONG J, KIM Y, et al. Enhancement of viewing angle and viewing distance in integral imaging by head tracking[C]//Digital Holography and Three-Dimensional Imaging 2009. Vancouver, Canada, 2009:DWB27.
[39] YU X B, SANG X Z, GAO X, et al. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues[J]. Optics Express, 2015, 23(20):25950-25958.
[40] KIM J, MIN S W, LEE B. Floated image mapping for integral floating display[J]. Optics Express, 2008, 16(12):8549-8556.
[41] KIM Y, CHOI H, KIM J, et al. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers[J]. Applied Optics, 2007, 46(18):3766-3773.
[42] FATTAL D, PENG Z, TRAN T, et al. A multi-directional backlight for a wide-angle, glasses-free 3D display[C]//Proceedings of 2013 IEEE Photonics Conference. Bellevue, USA, 2013:24-25.
[43] EL-GHOROURY H S, CHUANG C L, ALPASLAN Z Y. 26.1:Invited paper:Quantum photonic imager (QPI):A novel display technology that enables more than 3D applications[J]. SID, 2015, 46(1):371-374.
[44] ALPASLAN Z Y, EI-GHOROURY H S. Small form factor full parallax tiled light field display[J]. Proceedings of the SPIE, 2015, 9391:93910E-1-93910E-10.
[45] LIN D, MELLI M, POLIAKOV E, et al. Optical metasurfaces for high angle steering at visible wavelengths[J]. Scientific Reports, 2017, 7:2286.
[46] LALANNE P, CHAVEL P. Metalenses at visible wavelengths:Past, present, perspectives[J]. Laser & Photonics Reviews, 2017, 11(3):1600295.
[1] WANG Shuyi, MAO Liangliang, WU Xinyang, TIAN Chengcheng, LIU Yi. Method of stress reaction induction in disaster scenarios based on virtual reality[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 960-967.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd