Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (11) : 992-999     DOI: 10.16511/j.cnki.qhdxxb.2018.22.049
PHYSICS AND ENGINEERING PHYSICS |
Data assimilation method for atmospheric dispersion based on a Gaussian puff model
LI Ke, LIANG Manchun, SU Guofeng
Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Download: PDF(4135 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Models are needed to quickly predict the atmospheric dispersion of radioactive material released in a nuclear accident. However, the uncertainties in the source term, meteorological data, and other conditions reduce the dispersion model prediction reliability. Data assimilation (DA) is usually introduced to improve the model predictions. The paper presents a DA method based on a Gaussian puff model to improve the predictions using some observed data. The method modifies the puff parameters to approximate the observed data in an iterative search. The four model parameters modified using particle swarm optimization in this study are the release rate, release height, wind direction, and mean wind speed. The method is applicable to mesoscale atmospheric dispersion with uniform and stable conditions over a flat area. Twin experiments are used to verify this DA method. The correlation coefficient between the experimental group and the control group at the observation points is 0.99. The source estimation in the non-steady condition is also tested with the correlation coefficient of 0.68, slightly better than the ensemble Kalman filter method. The method converges rapidly with good model predictions; thus, this method is useful for data assimilation of atmospheric dispersion.
Keywords radioactive nuclear accident      atmospheric dispersion      data assimilation      particle swarm optimization     
Issue Date: 21 November 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ke
LIANG Manchun
SU Guofeng
Cite this article:   
LI Ke,LIANG Manchun,SU Guofeng. Data assimilation method for atmospheric dispersion based on a Gaussian puff model[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 992-999.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.22.049     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I11/992
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] NASSTROM J S, SUGIYAMA G, BASKETT R L, et al. The national atmospheric release advisory center modelling and decision-support system for radiological and nuclear emergency preparedness and response[J]. International Journal of Emergency Management, 2007, 4(3):524-550.
[2] THYKIER-NIELSEN S, DEME S, MIKKELSEN T. Description of the atmospheric dispersion module RIMPUFF[R]. Roskilde, Denmark:Risø National Laboratory, 1999.
[3] SCIRE J S, STRIMAITIS D G, YAMARTINO R J. A user's guide for the CALPUFF dispersion model[M]. Concord, USA:Earth Tech, 2000.
[4] 王醒宇, 康凌. 核事故后果评价方法及其新发展[M]. 北京:原子能出版社, 2003. WANG X Y, KANG L. The method and new development of nuclear accident consequences assessment[M]. Beijing:Atomic Energy Press, 2003. (in Chinese)
[5] 王跃山. 数据同化:它的缘起、含义和主要方法[J]. 海洋预报, 1999, 16(1):11-20. WANG Y S. Data assimilation:Its cause, its meaning and main procedures[J]. Marine Forecasts, 1999, 16(1):11-20. (in Chinese)
[6] EHRHARDT J. The RODOS system:Decision support for off-site emergency management in Europe[J]. Radiation Protection Dosimetry, 1997, 73(1-4):35-40.
[7] ROJAS-PALMA C, MADSEN H, GERING F, et al. Data assimilation in the decision support system RODOS[J]. Radiation Protection Dosimetry, 2003, 104(1):31-40.
[8] ZHENG D Q, LEUNG J K C, LEE B Y, et al. Data assimilation in the atmospheric dispersion model for nuclear accident assessments[J]. Atmospheric Environment, 2007, 41(11):2438-2446.
[9] ZHENG D Q, LEUNG J K C, LEE B Y. Online update of model state and parameters of a Monte Carlo atmospheric dispersion model by using ensemble Kalman filter[J]. Atmospheric Environment, 2009, 43(12):2005-2011.
[10] ZHANG X L, SU G F, YUAN H Y, et al. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion:Prediction improved and source estimated[J]. Journal of Hazardous Materials, 2014, 280:143-155.
[11] ZHANG X L, SU G F, CHEN J G, et al. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents:An application to Kincaid tracer experiment[J]. Journal of Hazardous Materials, 2015, 297:329-339.
[12] QUÉLO D, SPORTISSE B, ISNARD O. Data assimilation for short range atmospheric dispersion of radionuclides:A case study of second-order sensitivity[J]. Journal of Environmental Radioactivity, 2005, 84(3):393-408.
[13] KRYSTA M, BOCQUET M, SPORTISSE B, et al. Data assimilation for short-range dispersion of radionuclides:An application to wind tunnel data[J]. Atmospheric Environment, 2006, 40(38):7267-7279.
[14] 刘蕴, 方晟, 李红, 等. 基于四维变分资料同化的核事故源项反演[J]. 清华大学学报(自然科学版), 2015, 55(1):98-104. LIU Y, FANG S, LI H, et al. Source inversion in nuclear accidents based on 4D variational data assimilation[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(1):98-104. (in Chinese)
[15] HIEMSTRA P H, KARSSENBERG D, VAN DIJK A. Assimilation of observations of radiation level into an atmospheric transport model:A case study with the particle filter and the ETEX tracer dataset[J]. Atmospheric Environment, 2011, 45(34):6149-6157.
[16] HIEMSTRA P H, KARSSENBERG D, VAN DIJK A, et al. Using the particle filter for nuclear decision support[J]. Environmental Modelling & Software, 2012, 37:78-89.
[17] BRIGGS G A. Diffusion estimation for small emissions. Preliminary report[R]. Washington, DC, USA:Department of Energy, USA, 1973.
[18] 包子阳, 余继周. 智能优化算法及其MATLAB实例[M]. 北京:电子工业出版社, 2016. BAO Z Y, YU J Z. Intelligent optimization algorithms and the MATLAB examples[M]. Beijing:Electronic Industry Press, 2016. (in Chinese)
[1] LIU Huasen, CHEN Ken, WANG Guolei. Optimization of transfer station parameters of a laser tracker based on the particle swarm algorithm for a large part experiencing 3D deformation[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 979-985.
[2] WANG Feng, ZHOU Yihong, ZHAO Chunju, ZHOU Huawei, CHEN Wenfu, TAN Yaosheng, LIANG Zhipeng, PAN Zhiguo, WANG Fang. Thermal parameter inversion for various materials of super high arch dams based on the hybrid particle swarm optimization method[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 747-755.
[3] CUI Junyun, CHEN Di, YUAN Ye, MA Yuliang, WANG Guoren. Online route planning algorithm in spatial crowdsourcing[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 672-682.
[4] LI Shengqiang, TAN Ming, ZHANG Zhanbo. An optimization method of brachistochrone problem with viscous friction and its application in ADS design[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 563-569.
[5] CHEN Dongqing, ZHANG Puhan, WANG Huazhong. Intrusion detection for industrial control systems based on an improved SVM method[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 380-386.
[6] LIU Chengying, WU Hao, WANG Liping, ZHANG Zhi. Tool wear state recognition based on LS-SVM with the PSO algorithm[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 975-979.
[7] LUO Lei, CHEN Ken, DU Fengpo, MA Zhenshu. Surface fitting and position-pose measurements based on an improved SA-PSO algorithm[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1061-1066.
[8] Yun LIU,Sheng FANG,Hong LI,Jingyuan QU,Rentai YAO,Dan FAN. Source inversion in nuclear accidents based on 4D variational data assimilation[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 98-104.
[9] Xiaofeng HU,Hong HUANG,Shifei SHEN. Simulations of atmospheric dispersion of radioactive materials with the urban canopy model[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 711-718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd