Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (11) : 966-971     DOI: 10.16511/j.cnki.qhdxxb.2018.22.050
MECHANICAL ENGINEERING |
Lower bound analysis of plastic limit and shakedown state of orthotropic materials
QIN Fang1, ZHANG Lele1, CHEN Min2, CHEN Geng3
1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China;
2. Department of Industrial Design, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China;
3. Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, Aachen 52062, Germany
Download: PDF(2492 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The purpose of this study is to predict the plastic limit and the shakedown state of orthotropic materials and structures. The Hill yield criterion is used in Melan's theory with the finite element method and large scale nonlinear programing combined to form a model to predict the plastic limit and the shakedown state of complex 3D structures made from multi-orthotropic materials. Several numerical examples are given to verify the accuracy, universality and efficiency of this method. The applicability of using shakedown theory to plastic analyses is extended in this work. This method can be used to design and assess structures made from orthotropic composites in engineering practice .
Keywords plastic limit      shakedown state      lower bound analysis      orthotropic material      Hill yield criterion      conic quadratic optimization     
Issue Date: 21 November 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIN Fang
ZHANG Lele
CHEN Min
CHEN Geng
Cite this article:   
QIN Fang,ZHANG Lele,CHEN Min, et al. Lower bound analysis of plastic limit and shakedown state of orthotropic materials[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 966-971.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.22.050     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I11/966
  
  
  
  
  
  
  
  
  
  
  
  
[1] LE C V, NGUYEN P H, ASKES H, et al. A computational homogenization approach for limit analysis of heterogeneous materials[J]. International Journal for Numerical Methods in Engineering, 2017, 112(10):1381-1401.
[2] PASTOR J, TURGEMAN S, BOEHLER J P. Solution of anisotropic plasticity problems by using associated isotropic problems[J]. International Journal of Plasticity, 1990, 6(2):143-168.
[3] ZHANG Y G, LU M W. Computational limit analysis of anisotropic axisymmetric shells[J]. International Journal of Pressure Vessels and Piping, 1994, 58(3):283-287.
[4] YU H S, SLOAN S W. Limit analysis of anisotropic soils using finite elements and linear programming[J]. Mechanics Research Communications, 1994, 21(6):545-554.
[5] YU H S, SLOAN S W. Finite element limit analysis of reinforced soils[J]. Computers & Structures, 1997, 63(3):567-577.
[6] CAPSONI A, CORRADI L, VENA P. Limit analysis of orthotropic structures based on Hill's yield condition[J]. International Journal of Solids and Structures, 2001, 38(22-23):3945-3963.
[7] 李华祥, 刘应华, 冯西桥, 等. 正交各向异性结构塑性极限载荷的上限分析[J]. 清华大学学报(自然科学版), 2001, 41(8):71-74. LI H X, LIU Y H, FENG X Q, et al. Upper bound analysis of plastic limit loads on orthotropic structures[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(8):71-74. (in Chinese)
[8] LI H X. Kinematic shakedown analysis of anisotropic heterogeneous materials:A homogenization approach[J]. Journal of Applied Mechanics, 2012, 79(4):041016.
[9] 张宏涛, 刘应华, 徐秉业. 正交各向异性结构的塑性极限与安定下限分析[J]. 工程力学, 2006, 23(1):11-16. ZHANG H T, LIU Y H, XU B Y. Lower bound limit and shakedown analysis of orthotropic structures[J]. Engineering Mechanics, 2006, 23(1):11-16. (in Chinese)
[10] ZHANG H T, LIU Y H, XU B Y. Plastic limit analysis of ductile composite structures from micro- to macro-mechanical analysis[J]. Acta Mechanica Solida Sinica, 2009, 22(1):73-84.
[11] MELAN E. Zur plastizität des räumlichen kontinuums[J]. Archive of Applied Mechanics, 1938, 9(2):116-126.
[12] HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1948, 193(1033):281-297.
[13] CHEN S S, LIU Y H, CEN Z Z. Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45-48):3911-3921.
[14] SIMON J W, WEICHERT D. Numerical lower bound shakedown analysis of engineering structures[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(41-44):2828-2839.
[15] CARVELLI V, CEN Z Z, LIU Y, et al. Shakedown analysis of defective pressure vessels by a kinematic approach[J]. Archive of Applied Mechanics, 1999, 69(9-10):751-764.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd