Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (2) : 181-187     DOI: 10.16511/j.cnki.qhdxxb.2018.25.002
NUCLEAR ENERGY AND NEW ENERGY |
Accurate continuum surface force model applicable to particle methods
SUN Chen, JIANG Shengyao, DUAN Riqiang
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Download: PDF(1302 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The continuum surface force (CSF) model was used to improve the accuracy of surface tension calculation using the particle method. A geometric method was developed to accurately detect the boundary particle with the curvature calculated from the surface divergence of the unit normal, which only depends on the boundary particles in the interaction domain. The surface tension was then calculated only on the boundary particle. Curvature calculation results using a circle and an ellipse showed that the curvature calculation is more accurate with the proper resolution and smoothing length. Two-dimensional, two single-phase models of square drop oscillations and two drops colliding with surface tension effects were simulated using the moving particle semi-implicit (MPS) method. The predicted oscillation periods agreed well with analytical results with reasonable shape and smooth surfaces. The results indicate that this improved CSF model can accurately simulate the surface tension effect in two-phase flows.
Keywords particle method      surface tension      continuum surface force model      moving particle semi-implicit method     
ZTFLH:  O351.2  
Issue Date: 15 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Chen
JIANG Shengyao
DUAN Riqiang
Cite this article:   
SUN Chen,JIANG Shengyao,DUAN Riqiang. Accurate continuum surface force model applicable to particle methods[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 181-187.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.25.002     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I2/181
  
  
  
  
  
  
  
  
[1] KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3):421-434.
[2] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. Astronomical Journal, 1977, 82(12):1013-1024.
[3] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics:Theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181:375-389.
url: http://dx.doi.org/10.1093/mnras/181.3.375
[4] NUGENT S, POSCH H A. Liquid drops and surface tension with smoothed particle applied mechanics[J]. Physical Review E, 2000, 62(4):4968-4975.
[5] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2):335-354.
[6] MORRIS J P. Simulating surface tension with smoothed particle hydrodynamics[J]. International Journal for Numerical Methods in Fluids, 2000, 33(3):333-353.
[7] ADAMI S, HU X Y, ADAMS N A. A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation[J]. Journal of Computational Physics, 2010, 229(13):5011-5021.
[8] ZHANG M Y. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method[J]. Journal of Computational Physics, 2010, 229(19):7238-7259.
[9] DUAN G T, KOSHIZUKA S, CHEN B. A contoured continuum surface force model for particle methods[J]. Journal of Computational Physics, 2015, 298:280-304.
url: http://dx.doi.org/10.1016/j.jcp.2015.06.004
[10] NOMURA K, KOSHIZUKA S, OKA Y, et al. Numerical analysis of droplet breakup behavior using particle method[J]. Journal of Nuclear Science and Technology, 2001, 38(12):1057-1064.
[11] LEE B H, PARK J C, KIM M H, et al. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200:1113-1125.
url: http://dx.doi.org/10.1016/j.cma.2010.12.001
[12] TANAKA M, MASUNAGA T. Stabilization and smoothing of pressure in MPS method by quasi-compressibility[J]. Journal of Computational Physics, 2010, 229(11):4279-4290.
[13] DILTS G A. Moving least-squares particle hydrodynamics Ⅱ:Conservation and boundaries[J]. International Journal for Numerical Methods in Engineering, 2000, 48(10):1503-1524.
[14] MARRONE S, COLAGROSSI A, TOUZE D L, et al. Fast free-surface detection and level-set function definition in SPH solvers[J]. Journal of Computational Physics, 2010, 229(10):3652-3663.
[15] MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1):214-226.
[16] LAMB H. Hydrodynamics[M]. 6th ed. Cambridge:Cambridge University Press, 1959.
[17] MELEAN Y, SIGALOTTI L D G. Coalescence of colliding van der Waals liquid drops[J]. International Journal of Heat and Mass Transfer, 2005, 48:4041-4061.
url: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.04.006
[1] ZHOU Bin, LI Siwei, CHEN Zhiyong, ZHANG Rong. Full-profile fit pendent drop method for surface tension measurements[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(12): 1352-1356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd