Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (7) : 639-649     DOI: 10.16511/j.cnki.qhdxxb.2018.25.030
HYDRAULIC ENGINEERING |
Integrated risk evaluation of large river-crossingbuildings in the Middle of the South-to-North Water Diversion Project
HAN Xun1, AN Xuehui1, LIU Chunna2
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Research Center for Sustainable Hydropower Development, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Download: PDF(1647 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  An integrated static and dynamic risk evaluation system was developed to classify the potential risks of large river-crossing buildings over the South-to-North Water Diversion Project. The system constructs an index based on design and construction quality information, the characteristics of different types of buildings and external conditions including the hydrology and geology. The static risk is given by a neural network model while the dynamic risk is related to flood, freezing, flushing and tensile stress conditions. The integrated risk index compares well with results in the literature with good results given in a case study.
Keywords river-crossing construction      risk identification      neural network      dynamic risk      risk index     
Issue Date: 15 July 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAN Xun
AN Xuehui
LIU Chunna
Cite this article:   
HAN Xun,AN Xuehui,LIU Chunna. Integrated risk evaluation of large river-crossingbuildings in the Middle of the South-to-North Water Diversion Project[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 639-649.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.25.030     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I7/639
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 刘恒, 宋轩, 耿雷华, 等. 南水北调中线交叉建筑物洪水风险估算模型研究[J]. 人民长江, 2010, 41(8):74-77, 99. LIU H, SONG X, GENG L H, et al. Research on flood risk estimation model of cross structures in Middle Route Project of South-North Water Diversion[J]. Yangtze River, 2010, 41(8):74-77, 99. (in Chinese)
[2] 刘涛, 邵东国, 顾文权. 基于层次分析法的供水风险综合评价模型[J]. 武汉大学学报(工学版), 2006, 39(4):25-28. LIU T, SHAO D G, GU W Q. Risk comprehensive evaluation of water supply in middle and lower reaches of Hanjiang River after implementation of Middle Route of South-to-North Water Diversion[J]. Engineering Journal of Wuhan University, 2006, 39(4):25-28. (in Chinese)
[3] 梁忠民. 南水北调中线工程供水量风险分析[J]. 河海大学学报, 2001, 29(5):49-53. LIANG Z M. Risk analysis on water supply quantity for Middle-line of South-North Water Transfer Project[J]. Journal of Hohai University, 2001, 29(5):49-53. (in Chinese)
[4] 李芬. 南水北调中线冰情综合分析平台研究[D]. 大连:大连理工大学, 2016. LI F. Research of comprehensive analysis platform for the Middle Route of Southe-to-North Water Transfer Project during freezing period[D]. Dalian:Dalian University of Technology, 2016. (in Chinese)
[5] 许新宜, 尹宏伟, 姚建文. 南水北调东线治污及其输水水质风险分析[J]. 水资源保护, 2004(2):1-2, 8. XU X Y, YIN H W, YAO J W. Pollution remediation along east route of South-to-North Water Transfer Project and risk analysis of quality of water conveyance[J]. Water Resources Protection, 2004(2):1-2, 8. (in Chinese)
[6] 肖伟华, 庞莹莹, 张连会, 等. 南水北调东线工程突发性水环境风险管理研究[J]. 南水北调与水利科技, 2010, 8(5):17-21. XIAO W H, PANG Y Y, ZHANG L H, et al. Study on the emergency water environmental risk management during operating period in the Eastern Route of South-to-North Water Diversion[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(5):17-21. (in Chinese)
[7] 贾超, 刘宁, 陈进, 等. 南水北调中线工程渡槽结构风险分析[J]. 水力发电, 2003, 29(7):23-27. JIA C, LIU N, CHEN J, et al. Risk analysis for aqueduct structure of the South-North Water Transfer Project (Central Route)[J]. Water Power, 2003, 29(7):23-27. (in Chinese)
[8] 朱元甡, 韩国宏, 王汝慈, 等. 南水北调中线工程交叉建筑物水毁风险分析[J]. 水文, 1995, 15(3):1-7, 65. ZHU Y S, HAN G H, WANG R C, et al. The risk analysis of flood damaging to the cross-structures on the main canal of the South-to-North Water Transfer Project[J]. Journal of China Hydrology, 1995, 15(3):1-7, 65. (in Chinese)
[9] SAATY T L. Analytic hierarchy process[M]. New York:McGraw-Hill, 1980:19-28.
[10] 耿雷华, 姜蓓蕾, 刘恒, 等. 南水北调东中线运行工程风险管理研究[M]. 北京:中国环境科学出版社, 2010. GENG L H, JIANG B L, LIU H, et al. Study on the operation risk management of East and Middle Line of the South-to-North Water Diversion Project[M]. Beijing:China Environmental Science Press, 2010. (in Chinese)
[11] 郭鹏, 施品贵. 项目风险模糊灰色综合评价方法研究[J]. 西安理工大学学报, 2005, 21(1):106-109. GUO P, SHI P G. Research on fuzzy-grey comprehensive evaluation method of project risk[J]. Journal of Xi'an University of Technology, 2005, 21(1):106-109. (in Chinese)
[12] 赖成光, 王兆礼, 宋海娟. 基于BP神经网络的北江流域洪灾风险评价[J]. 水电能源科学, 2011, 29(3):57-59, 161. LAI C G, WANG Z L, SONG H J. Risk assessment of flood hazard in Beijiang river basin based on BP neural network[J]. Water Resources and Power, 2011, 29(3):57-59, 161. (in Chinese)
[13] 李绍飞, 余萍, 孙书洪. 基于神经网络的蓄滞洪区洪灾风险模糊综合评价[J]. 中国农村水利水电, 2008(6):60-64. LI S F, YU P, SUN S H. Fuzzy risk assessment of flood hazard based on artificial neural network for detention basin[J]. China Rural Water and Hydropower, 2008(6):60-64. (in Chinese)
[14] 宋轩, 刘恒, 耿雷华, 等. 南水北调中线工程交叉建筑物风险识别[J]. 南水北调与水利科技, 2009, 7(4):13-15. SONG X, LIU H, GENG L H, et al. Risk identification for crossing structures in the Middle Route of the South-to-North Water Transfer Project[J]. South-to-North Water Transfers and Water Science & Technology, 2009, 7(4):13-15. (in Chinese)
[15] 夏富洲. 渡槽水毁及其它破坏的修复[J]. 人民长江, 2000, 31(3):17-19, 50. XIA F Z. Repairing of aqueduct damage by water and other failures[J]. Yangtze River, 2000, 31(3):17-19, 50. (in Chinese)
[16] 张劲松, 徐云修. 倒虹吸管的破坏分析及修补措施[J]. 中国农村水利水电, 2000(3):6-8. ZHANG J S, XU Y X. Damage analysis and repair of inverted siphon[J]. China Rural Water and Hydropower, 2000(3):6-8. (in Chinese)
[17] 中华人民共和国国家发展和改革委员会. 水工建筑物止水带技术规范:DL/T 5215-2005[S]. 北京:中国电力出版社, 2005. National Development and Reform Commission. Specification for waterstop of hydraulic structure:DL/T 5215-2005[S]. Beijing:Electric Power Press of China, 2005. (in Chinese)
[18] 国家能源局. 水工混凝土钢筋施工规范:DL/T 5169-2013[S]. 北京:中国电力出版社, 2013. National Energy Administration. Specification for construction of hydraulic concrete reinforcement:DL/T 5169-2013[S]. Beijing:China Electric Power Press, 2013. (in Chinese)
[19] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 防洪标准:GB 50201-2014[S]. 北京:中国标准出版社, 2015. Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standard for flood control:GB 50201-2014[S]. Beijing:Standards Press of China, 2015. (in Chinese)
[20] 中华人民共和国住房和城乡建设部. 混凝土质量控制标准:GB 50164-2011[S]. 北京:中国建筑工业出版社, 2012. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard foe quality control of concrete:GB 50164-2011[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
[21] 中华人民共和国住房和城乡建设部. 建筑地基处理技术规范:JGJ 79-2012[S]. 北京:中国建筑工业出版社, 2013. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for ground treatment of buildings:JGJ 79-2012[S]. Beijing:China Architecture & Building Press, 2013. (in Chinese)
[22] 中华人民共和国水利部. 水利水电工程施工质量检验与评定规程:SL 176-2007[S]. 北京:中国水利水电出版社, 2007. The Ministry of Water Resources of the People's Republic of China. Inspection and assessment specification for construction quality of hydraulic and hydroelectric engineering:SL 176-2007[S]. Beijing:China Water & Power Press, 2007. (in Chinese)
[23] 中华人民共和国水利部. 水利水电工程等级划分及洪水标准:SL 252-2017[S]. 北京:中国水利水电出版社, 2017. The Ministry of Water Resources of the People's Republic of China. Standard for rank classification and flood protection criteria of water and hydropower projects:SL 252-2017[S]. Beijing:China Water & Power Press, 2017. (in Chinese)
[24] 中华人民共和国水利部. 灌溉与排水渠系建筑物设计规范:SL 482-2011[S]. 北京:中国水利水电出版社, 2011. The Ministry of Water Resources of the People's Republic of China. Code for design of irrigation and drainage canal system structures:SL 482-2011[S]. Beijing:China Water & Power Press, 2011. (in Chinese)
[25] 中华人民共和国交通部. 公路工程水文勘测设计规范:JTG C30-2002[S]. 北京:人民交通出版社, 2004. Ministry of Transport of the People's Republic of China. Hydrological specifications for survey and design of highway engineering:JTG C30-2002[S]. Beijing:China Communications Press, 2004. (in Chinese)
[26] 中华人民共和国水利部. 水工混凝土结构设计规范:SL 191-2008[S]. 北京:中国水利水电出版社, 2009. The Ministry of Water Resources of the People's Republic of China. Design code for hydraulic concrete structures:SL 191-2008[S]. Beijing:China Water & Power Press, 2009. (in Chinese)
[27] OLSEN J R, STEDINGER J R, MATALAS N C, et al. Climate variability and flood frequency estimation for the upper mississippi and lower missouri rivers[J]. Journal of the American Water Resources Association, 1999, 35(6):1509-1523.
[28] TUNG Y K. Models for evaluating flow conveyance reliability of hydraulic structures[J]. Water Resources Research, 1985, 21(10):1463-1468.
[29] TUNG Y K. Risk-based design of flood defense systems[C]//Proceedings of the 2nd International Symposium on Flood Defense. Beijing, China:Tsinghua University, 2002.
[1] ZHANG Xueqin, LIU Gang, WANG Zhineng, LUO Fei, WU Jianhua. Microscopic diffusion prediction based on multifeature fusion and deep learning[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 688-699.
[2] ZHANG Mingfang, LI Guilin, WU Chuna, WANG Li, TONG Lianghao. Estimation algorithm of driver's gaze zone based on lightweight spatial feature encoding network[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 44-54.
[3] WANG Qingren, WANG Yinzi, ZHONG Hong, ZHANG Yiwen. Chinese-oriented entity recognition method of character vocabulary combination sequence[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1326-1338.
[4] YANG Bo, QIU Lei, WU Shu. A collaborative filtering model based on heterogeneous graph neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1339-1349.
[5] FU Wen, WEN Hao, HUANG Junhui, SUN Binxuan, CHEN Jiajie, CHEN Wu, FENG Yue, DUAN Xingguang. Adaptive sliding mode control of underwater manipulator based on nonlinear dynamics model compensation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1068-1077.
[6] HUANG Ben, KANG Fei, TANG Yu. A real-time detection method for concrete dam cracks based on an object detection algorithm[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1078-1086.
[7] CHEN Bo, ZHANG Hua, CHEN Yongcan, LI Yonglong, XIONG Jinsong. Semantic segmentation method of hydraulic structure crack based on feature enhancement[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1135-1143.
[8] DAI Xin, HUANG Hong, JI Xinyu, WANG Wei. Spatiotemporal rapid prediction model of urban rainstorm waterlogging based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 865-873.
[9] LI Congjian, GAO Hang, LIU Yi. Fast reconstruction of a wind field based on numerical simulation and machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 882-887.
[10] DU Xiaochuang, LIANG Manchun, LI Ke, YU Yancheng, LIU Xin, WANG Xiangwei, WANG Rudong, ZHANG Guojie, FU Qi. A gamma radionuclide identification method based on convolutional neural networks[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 980-986.
[11] AN Jian, CHEN Yuxuan, SU Xingyu, ZHOU Hua, REN Zhuyin. Applications and prospects of machine learning in turbulent combustion and engines[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 462-472.
[12] SUN Jihao, SONG Ying, SHI Yunjiao, ZHAO Ningbo, ZHENG Hongtao. Prediction of the pollutant generation of a natural gas-powered coaxial staged combustor[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 649-659.
[13] LIU Jiangfan, GE Bing, LI Shanshan, LU Xiang. A prediction method for wall cooling efficiency of combustor chamber based on neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 681-690.
[14] GUO Shiyuan, MA Weizhi, LU Ruilin, LIU Jinlong, YANG Zhigang, WANG Zhongjing, ZHANG Min. Prediction of canal discharge under complex conditions based on a long short-term memory neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 1924-1934.
[15] DENG Qing, ZHANG Bo, LI Yihao, ZHOU Liang, ZHOU Zhengqing, JIANG Huiling, GAO Yang. Crowd counting model for evacuation scenarios based on a cascaded CNN[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 146-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd