Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (7) : 523-529     DOI: 10.16511/j.cnki.qhdxxb.2018.25.061
COMPUTER SCIENCE AND TECHNOLOGY |
One-hot encoding and convolutional neural network based anomaly detection
LIANG Jie1, CHEN Jiahao2, ZHANG Xueqin2, ZHOU Yue2, LIN Jiajun2
1. China Information Security Certification Center, Beijing 100085, China;
2. College of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Download: PDF(1102 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Deep learning based network anomaly detection is a new research field with previous studies using preprocessed datasets based on data mining or other methods. This paper transforms and encodes the UNSW-NB15 dataset using one-hot encoding to a two-dimensional dataset. Then, GoogLeNet is used for deep learning network to extract the features and train the classifier. Tests show that this method can effectively process the original network packet with a classification accuracy over 99%, which is much higher than deep learning detection methods based on preprocessed data.
Keywords anomaly detection      convolutional neural network      one-hot encoding      UNSW-NB15 dataset     
Issue Date: 21 June 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Jie
CHEN Jiahao
ZHANG Xueqin
ZHOU Yue
LIN Jiajun
Cite this article:   
LIANG Jie,CHEN Jiahao,ZHANG Xueqin, et al. One-hot encoding and convolutional neural network based anomaly detection[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 523-529.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.25.061     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I7/523
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] FIORE U, PALMIERI F, CASTIGLIONE A, et al. Network anomaly detection with the restricted Boltzmann machine[J]. Neurocomputing, 2013, 122:13-23.
[2] YADAV S, SUBRAMANIAN S. Detection of application layer DDoS attack by feature learning using stacked AutoEncoder[C]//Proceedings of 2016 International Conference on Computational Techniques in Information and Communication Technologies. New Delhi, India:IEEE, 2016:361-366.
[3] YIN C L, ZHU Y F, FEI J L, et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access, 2017, 5:21954-21961.
[4] YUAN X Y, LI C H, LI X L. DeepDefense:Identifying DDoS attack via deep learning[C]//Proceedings of 2017 IEEE International Conference on Smart Computing. Hong Kong, China:IEEE, 2017:1-8.
[5] LI Z P, QIN Z, HUANG K, et al. Intrusion detection using convolutional neural networks for representation learning[M]//LIU D, XIE S, LI Y, et al. Neural Information Processing. Cham:Springer, 2017:858-866.
[6] WANG W, SHENG Y Q, WANG J L, et al. HAST-IDS:Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J]. IEEE Access, 2018, 6:1792-1806.
[7] MOUSTAFA N, SLAY J. UNSW-NB15:A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Proceedings of 2015 Military Communications and Information Systems Conference. Canberra, ACT, Australia:IEEE, 2015:1-6.
[8] MOUSTAFA N, SLAY J. The evaluation of network anomaly detection systems:Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set[J]. Information Systems Security, 2016, 25(1-3):18-31.
[9] BOUVRIE J. Notes on convolutional neural networks[Z]. Neural Networks, 2006.
[10] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA:IEEE, 2015:1-9.
[11] LIN M, CHEN Q, YAN S C. Network in network[Z]. arXiv:1312.4400, 2013.
[1] YANG Bo, QIU Lei, WU Shu. A collaborative filtering model based on heterogeneous graph neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1339-1349.
[2] CHEN Bo, ZHANG Hua, CHEN Yongcan, LI Yonglong, XIONG Jinsong. Semantic segmentation method of hydraulic structure crack based on feature enhancement[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1135-1143.
[3] DU Xiaochuang, LIANG Manchun, LI Ke, YU Yancheng, LIU Xin, WANG Xiangwei, WANG Rudong, ZHANG Guojie, FU Qi. A gamma radionuclide identification method based on convolutional neural networks[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 980-986.
[4] DENG Qing, ZHANG Bo, LI Yihao, ZHOU Liang, ZHOU Zhengqing, JIANG Huiling, GAO Yang. Crowd counting model for evacuation scenarios based on a cascaded CNN[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 146-152.
[5] WANG Xiaomeng, GUAN Zhibin, XIN Wei, WANG Jiajie. Source code defect detection using deep convolutional neural networks[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1267-1272.
[6] HAN Kun, PAN Haiwei, ZHANG Wei, BIAN Xiaofei, CHEN Chunling, HE Shuning. Alzheimer's disease classification method based on multi-modal medical images[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 664-671,682.
[7] WANG Zhiguo, ZHANG Yujin. Anomaly detection in surveillance videos: A survey[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 518-529.
[8] LIN Peng, WEI Pengcheng, FAN Qixiang, CHEN Wenqi. CNN model for mining safety hazard data from a construction site[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 628-634.
[9] SONG Yubo, YANG Huiwen, WU Wei, HU Aiqun, GAO Shang. Joint DDoS detection system based on software-defined networking[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 28-35.
[10] ZHANG Sicong, XIE Xiaoyao, XU Yang. Intrusion detection method based on a deep convolutional neural network[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 44-52.
[11] LIU Qiong, LI Zongxian, SUN Fuchun, TIAN Yonghong, ZENG Wei. Image recognition and classification by deep belief-convolutional neural networks[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(9): 781-787.
[12] SONG Qingsong, ZHANG Chao, CHEN Yu, WANG Xingli, YANG Xiaojun. Road segmentation using full convolutional neural networks with conditional random fields[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 725-731.
[13] CHEN Xingshu, CHEN Jiaxin, ZHAO Dandan, JIN Xin. Anomaly detection based on IO sequences in a virtual machine with the Markov mode[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 395-401,410.
[14] JIA Fan, YAN Yan, ZHANG Jiaqi. K-means based feature reduction for network anomaly detection[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 137-142.
[15] LU Xiaofeng, ZHANG Shengfei, YI Shengwei. Free-text keystroke continuous authentication using CNN and RNN[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(12): 1072-1078.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd