Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (2) : 212-216     DOI: 10.16511/j.cnki.qhdxxb.2018.26.004
AUTOMOTIVE ENGINEERING |
Simulation of a multi-axial loading fatigue test of the rear drive axle of a minivan
DONG Zhichao1, WANG Xiaofeng1, LOU Weipeng1, HUANG Yuanyi2, ZHONG Ming2
1. Department of Automotive Engineering, Tsinghua University, Beijing 100084, China;
2. SAIC GM Wuling Automobile Co., Ltd., Liuzhou 545007, China
Download: PDF(2083 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  When a vehicle is running, its suspension is heavily loaded due to the motion. The durability is then one of the key problems in vehicle design. Multi-axial loading laboratory fatigue tests are widely used to shorten the development process, reduce costs and enhance market competitiveness. This paper presents a practical method for simulating multi-axial fatigue tests of a rear axle using a dynamic finite element model of the rear axle and data processing in MATLAB. The simulation of the laboratory fatigue tests includes system identification, calculation of the input dynamic loads for the finite-element model and calculation of the stress-strain response reproduced and compared with the measured stress-strain response. With the errors of less than 5% with the critical fatigue areas in the rear axle located where the section sizes change.
Keywords finite element      multi-axial loading      road simulation      system identification      stress-strain response      critical fatigue areas     
ZTFLH:  O242.21  
Issue Date: 15 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Zhichao
WANG Xiaofeng
LOU Weipeng
HUANG Yuanyi
ZHONG Ming
Cite this article:   
DONG Zhichao,WANG Xiaofeng,LOU Weipeng, et al. Simulation of a multi-axial loading fatigue test of the rear drive axle of a minivan[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 212-216.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.26.004     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I2/212
  
  
  
  
  
  
  
  
  
  
[1] JACOBY G. Betriebslastensimulation an fahrzeugbauteilen mittels servohydraulischer prüfeinrichtungen[J]. VDI-Berichte, 1987:1-54.
[2] WHITE K J. The road simulator-a practical laboratory approach. Prediction and simulation of in-servcice conditions[C]//Proceedings of the Conference Held at the Institution of Mechanical Engineers. Washington, DC, USA:Mechanical Engineering Publications Limited, 1985:69-80.
[3] FEITZELMAYER K, BREITLING U. Development of commercial vehicle rear driven axles on multi-axis test set-ups:Prediction and simulation of in-service conditions[C]//Proceedings of the Conference Held at the Institution of Mechanical Engineers. Washington, DC:Mechanical Engineering Publications Limited, 1985:131-138.
[4] DODDS C J. A computer system for multi-channel remote parameter control of a test specimen[Z]. Forney:MTS Publication, 1977.
[5] 王霄锋. 汽车可靠性工程基础[M]. 北京:清华大学出版社, 2007. WANG X F. Fundamentals of automotive reliability engineering[M]. Beijing:Tsinghua University Press, 2007. (in Chinese)
[6] Anon. Simulation testing and SPiDAR-IDC[Z]. Forney:Fairhurst Structural Monitoring Publication, 1987.
[7] DE CUYPER J, COPPENS D, LIEFOOGHE C, et al. Advanced system identification methods for improved service load simulation on multi-axial test rigs[J]. European Journal of Mechanical & Environmental Engineering, 1999, 44:27-39.
url: http://dx.doi.org/ean Journal of Mechanical
[8] DE CUYPER J, COPPENS D. Service simulation on multi axis test rigs[J]. Sound and Vibration, 1999, 30(1):30-35.
[9] KANG D, HEO S, KIM H. Virtual road profile modeling using equivalent damage method for VPG simulation[J]. SAE Technical Paper, 2009, 2009-01-0814.
[10] 曹正林, 李骏, 郭孔辉. 基于虚拟试车场的轿车悬架耐久性强化试验仿真研究[J]. 机械工程学报, 2012, 48(10):122-127. CAO Z L, LI J, GUO K H. Research on passenger car suspension durability using virtual proving ground[J]. Journal of Mechanical Engineering, 2012, 48(10):122-127. (in Chinese)
[11] FRICKE D, FROST M. Development of a full-vehicle hybrid-simulation test using hybrid system response convergence (HSRC)[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2012, 5(2):921-936.
[12] YOU S, JOO S G. Virtual testing and correlation with spindle coupled full vehicle testing system[J]. SAE Technical Paper, 2006, 2006-01-0993.
[13] YOO S S, Fricke D. Advances of virtual testing and hybrid simulation in automotive performance and durability evaluation[J]. SAE International Journal of Materials and Manufacturing, 2011, 4(1):98-110.
[14] DOWLING N. A discussion of methods for estimating fatigue life[J]. SAE Technical Paper, 1982, 820691.
[15] REEMSNYDER H. Constant amplitude fatigue life assessment models[J]. SAE Technical Paper, 1982, 820688.
[16] SOCIE D. Variable amplitude fatigue life estimation models[J]. SAE Technical Paper, 1982, 820689.
[1] WANG Zhiqiang, LEI Zhenyu. Mechanism of corrugation on the track with Cologne egg fasteners based on transient contact characteristics[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1844-1855.
[2] ZHOU Wei, LI Min, QIU Mingjun, ZHANG Xilong, LIU Jiang, ZHANG Hongbo. Vehicle body panel thickness optimization by a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 523-532.
[3] ZHANG Hongwei, GUI Liangjin, FAN Zijie. Research and verification of welding heat source parameter optimization model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 367-373.
[4] ZHANG Ningyuan, LUO Bin, SHEN Yuzhou, JIANG Peng, LI Hui, LI Qingwei. Structural response of the FAST cable-net at large zenith angles[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1809-1815,1822.
[5] HUANG Weican, JIANG Xiaohua, XUE Peng, LI Xinyang, SHEN Zhidong, SUN Yuguang. Conductor design in bipolar superconducting DC energy pipelines[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1715-1720.
[6] LI Yanlin, QIN Benke, BO Hanliang. Analytical model and verification of capacitance rod position measurement sensor[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1636-1644.
[7] ZHANG Hongwei, GUI Liangjin, FAN Zijie. Simulations and experimental verification of esidual welding stresses in drive axle housings[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 116-124.
[8] BAO Jinqing, YANG Chenxu, XU Jianguo, LIU Hongxia, WANG Gaocheng, ZHANG Guangming, CHENG Wei, ZHOU Desheng. A fully coupled and full 3D finite element model for hydraulic fracturing and its verification with physical experiments[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 833-841.
[9] CHEN Zhiheng, RONG Guan, TAN Yaosheng, ZHANG Ziyang, WANG Kexiang, LUO Guanjun. Three-dimensional seepage field simulations to evaluate seepage control for the Baihetan dam[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 705-713,723.
[10] XU Wei, ZHAO Zhengming, JIANG Qirong. Calculation method for parasitic capacitance of high-frequency transformers[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1088-1096.
[11] WANG Bo, HE Yangyang, NIE Bingbing, XU Shucai, ZHANG Jinhuan. Numerical investigation of vehicle occupant injury risks in underbody blast events[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 902-909.
[12] WEI Kunpeng, DAI Xingjian, SHAO Zongyi. Measurements and finite element analyses of the bending stiffness of laminated carbon fiber bellows[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 587-592.
[13] GUI Liangjin, ZHANG Xiaoqian, ZHOU Chi, FAN Zijie. Finite element prediction of the forming limit curve for anisotropic high-strength steel[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 66-72.
[14] LÜ Jiangwei, ZHOU Kai. Optimal pole width ratio for high force density linear switched reluctance motors[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 469-476.
[15] NIE Junfeng, TANG Zhenrui, ZHANG Haiquan, LI Hongke, WANG Xin. Crystal plasticity constitutive model for BCC based on the dislocation density[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 780-784.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd