Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (4) : 411-416     DOI: 10.16511/j.cnki.qhdxxb.2018.26.023
MECHANICAL ENGINEERING |
Calibration of 3-D measurement system based on a double position sensitive detectors
ZHENG Jun, LI Wenqing
Key Laboratory of Materials Processing Technology of the Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(3125 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Binocular vision systems have been widely used in many areas. Traditional calibration methods for binocular vision systems commonly use many complicated mathematical models, which result in low precision and speed. This paper presents a fast measurement method based on double position sensitive detectors (PSDs). Two detectors are aimed from different angles to detect the position of the laser point for the 3D measurement. The 3-D measurement is greately simplified by replacing a charge coupled device (CCD) with a PSD. Since this method is fundamentally different from traditional methods, the normal calibration methods are no longer applicable. Thus, this article presents two calibration methods respectively using an improved Faugeras calibration combined with Levenberg-Marquardt (LM) arithmetic optimization and a back propagation (BP) neural network. Tests show that the LM optimization gives better accuracy and stability.
Keywords 3-D measurement      position sensitive detector      Faugeras calibration      Levenberg-Marquardt arithmetic optimization      back propagation neural networks     
ZTFLH:  TP391.41  
Issue Date: 15 April 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Jun
LI Wenqing
Cite this article:   
ZHENG Jun,LI Wenqing. Calibration of 3-D measurement system based on a double position sensitive detectors[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 411-416.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.26.023     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I4/411
  
  
  
  
  
  
  
  
[1] 阳军连. 基于双目视觉三维测量技术的研究与应用[D]. 大连:大连理工大学, 2014. YANG J L. Research and application of three-dimensional measurement based on binocular stereo vision[D]. Dalian:Dalian University of Science and Technology, 2014. (in Chinese)
[2] 马源. 基于双目立体视觉的深度感知技术研究[D]. 北京:北京理工大学, 2015. MA Y. Research on depth perception based on the binocular stereo vision[D]. Beijing:Beijing Institute of Technology, 2015. (in Chinese)
[3] 戴宗贤.基于双目视觉的三维重建与测量技术研究[D]. 重庆:重庆大学, 2014. DAI Z X. Research 3-D reconstruction and measurement techniques based on binocular vision[D]. Chongqing:Chongqing University, 2014. (in Chinese)
[4] 杜宇. 三维重建中双目立体视觉关键技术的研究[D]. 哈尔滨:哈尔滨理工大学, 2014. DU Y. Research on key technology of binocular stereo vision in three-dimensional reconstruction[D]. Harbin:Harbin University of Science and Technology, 2014. (in Chinese)
[5] 王文韬. 基于双PSD的运动目标轨迹跟踪测量系统研究[D]. 大连:大连理工大学, 2015. WANG W T. Research on double PSDs-based measurement system of trajectory tracking of a moving target[D]. Dalian:Dalian University of Technology, 2015. (in Chinese)
[6] 卢晓红, 王文韬, 司立坤,等. 基于双PSD的机械手运动轨迹跟踪测量装置[J]. 制造技术与机床, 2015(6):61-66. LU X H, WANG W T, SI L K, et al. The double PSD-based measuring instrument to realize the trajectory tracking measurement of manipulator[J]. Manufacturing Technology and Machine Tool, 2015(6):61-66. (in Chinese)
[7] 莫伟. 基于PSD的高速激光距离传感器的信号检测与处理[D]. 武汉:华中科技大学, 2008. MO W. Signal detection and process of high-speed laser distance sensor based on PSD[D]. Wuhan:Huazhong University of Science and Technology, 2008. (in Chinese)
[8] 宋庆, 王红平, 柳长青. 双PSD实现长直导轨四自由度测量的新方法[J]. 工具技术, 2014, 48(3):86-89. SONG Q, WANG H P, LIU C Q. New method based on PSD to measure four degree of freedom of long linear guide rails[J]. Tool Engineering, 2014, 48(3):86-89. (in Chinese)
[9] 刘金颂, 原思聪, 张庆阳,等. 双目立体视觉中的摄像机标定技术研究[J]. 计算机工程与应用, 2008, 44(6):237-239. LIU J S, YUAN S C, ZHANG Q Y, et al. Research on camera calibration in binocular stereo vision[J]. Computer Engineering and Applications, 2008, 44(6):237-239. (in Chinese)
[10] 徐德, 谭民, 李原. 机器人视觉测量与控制:3版[M]. 北京:国防工业出版社, 2016. XU D, TAN M, LI Y. Visual measurement and control for robots:3rd ed.[M]. Beijing:National Defense Industry Press. 2016. (in Chinese)
[11] 丁锋. 系统辨识新论[M]. 北京:科学出版社, 2013. DING F. New theory of system identification[M]. Beijing:Science Press, 2013. (in Chinese)
[12] 赵弘, 周瑞祥, 林廷圻. 基于Levenberg-Marquardt算法的神经网络监督控制[J]. 西安交通大学学报, 2002, 36(5):523-527. ZHAO H, ZHOU R X, LIN T Q. Neural network supervised control based on Levenberg-Marquardt algorithm[J]. Journal of Xi'an Jiaotong University, 2002, 36(5):523-527. (in Chinese)
[13] FUNAHASHI K I. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks, 1989, 2(3):183-192.
[14] 华希俊, 李永超, 王木菊, 等. 基于BP神经网络的摄像机标定方法研究[J]. 机械设计与制造, 2010(11):51-53. HUA X J, LI Y C, WANG M J, et al. Research of camera calibration based on BP neural network[J]. Machinery Design and Manufacture, 2010(11):51-53. (in Chinese)
[15] 崔彦平, 林玉池, 张晓玲. 基于神经网络的双目视觉摄像机标定方法的研究[J]. 光电子·激光, 2005, 16(9):1097-1100. CUI Y P, LIN Y C, ZHANG X L. Study on camera calibration for binocular vision based on neural network[J]. Journal of Optoelectronics·Laser, 2005, 16(9):1097-1100. (in Chinese)
[1] ZHENG Jun, WEI Haiyong. Three-dimensional object recognition and posture calculations based on the whitening transformation and curvature characteristics[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1025-1030.
[2] CHEN Baohua, DENG Lei, DUAN Yueqi, CHEN Zhixiang, ZHOU Jie. Multiple model fusion in 3-D reconstruction: Illumination and scale invariance[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(9): 969-973.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd