Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (6) : 603-608     DOI: 10.16511/j.cnki.qhdxxb.2018.26.027
ELECTRONIC ENGINEERING |
Beamforming and maximum likelihood estimation for speech enhancement using dual closely-spaced microphones
GONG Qin1,2, ZHENG Shuo1
1. Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China;
2. Research Center of Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
Download: PDF(2526 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Traditional beamforming systems using dual closely-spaced microphones have various problems such as low-frequency-roll-off and limitations in suppressing competitive speech noises from multiple directions. This paper presents a two-step beamforming and maximum likelihood estimation algorithm. The algorithm first uses a WOLA filter for the time-frequency analysis for the speech mixture and then sets mask values to suppress background noise without low-frequency-roll-off based on the ratio of the two beamforming patterns, which have zeros at 0ånd 180°. A statistical model and the maximum likelihood estimation are then used to further enhance the speech. Tests indicate that the algorithm effectively recovers the energy distribution of the target signal and improves the signal-to-noise ratio without a low-pass filter or broadband compensation when the signal-to-ratio is low or multiple kinds of noises exist.
Keywords closely-spaced dual microphones      beamforming      maximum likelihood estimation      low-frequency roll-off      competitive speech noises from multiple directions     
Issue Date: 15 June 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GONG Qin
ZHENG Shuo
Cite this article:   
GONG Qin,ZHENG Shuo. Beamforming and maximum likelihood estimation for speech enhancement using dual closely-spaced microphones[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 603-608.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.26.027     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I6/603
  
  
  
  
  
  
  
  
  
[1] NOH J, JO H, PARK Y, et al. Acoustic-focusing headphone based on delay-and-sum beamforming[C]//Proceedings of 2010 International Conference on Control, Automation and Systems. Gyeonggi-do, Korea:IEEE Press, 2010:2061-2064.
[2] KOKKINAKIS K, RUNGE C, TAHMINA Q, et al. Evaluation of a spectral subtraction strategy to suppress reverberant energy in cochlear implant devices[J]. Journal of the Acoustical Society of America, 2015, 138(1):115-124.
[3] SALEEM N. Single channel noise reduction system in low SNR[J]. International Journal of Speech Technology, 2017, 20(1):89-98.
[4] MAHIEUX Y, LE TOURNEUR G, SALIOU A. A microphone array for multimedia workstations[J]. Journal of the Audio Engineering Society, 1996, 44(5):365-372.
[5] BRANDSTEIN M S, WARD E D B. Microphone arrays:Signal processing techniques and applications[M]. Berlin:Springer, 2001.
[6] GRIFFITHS L J, JIM C W. An alternative approach to linearly constrained adaptive beamforming[J]. IEEE Transactions on Antenaas Propagation, 1982, 30(1):27-34.
[7] GONG Q, CHEN Y S. Parameter selection methods of delay and beamforming for cochlear implant speech enhancement[J]. Acoustic Physics, 2011, 57(4):542-550.
[8] MAJ J, WOUTERS J, MOONEN M. A two-stage adaptive beamformer for noise reduction in hearing aids[C]//Proceedings of 2001 Workshop on Acoustic Echo and Noise Control. Darmstadt, Germany:IEEE Press, 2001:171-174.
[9] LAI C C, NORDHOLM S, LEUNG Y H. Design of steerable spherical broadband beamformers with flexible sensor configurations[J]. IEEE Transactions on Audio, Speech and Language Processing, 2013, 21(2):427-438.
[10] LUO F L, YANG J, PAVLOVIC C. Adaptive null-forming scheme in digital hearing aids[J]. IEEE Transactions on Signal Processing, 2002, 50(7):1583-1590.
[11] JACEK D, JACOB B, SOFIENE A. Direction of arrival estimation using the parameterized spatial correlation matrix[J]. IEEE Transactions on Audio, Speech and Language Processing, 2007, 15(4):1327-1339.
[12] CHEN Y S, GONG Q. Broadband beamforming compensation algorithm in CI front-end acquisition[J/OL].[2017-10-01]. https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925x-12-18.
[13] YOUSEFIAN N, LOIZOU P C. A dual-microphone speech enhancement algorithm based on the coherence function[J]. IEEE Transactions on Audio Speech and Language Processing, 2012, 20(2):599-609.
[14] AISSA-EL-BEY A, LINH-TRUNG N, ABED-MERAIM K, et al. Underdetermined blind separation of nondisjoint sources in the time-frequency domain[J]. IEEE Transactions on Signal Processing, 2007, 55(3):897-907.
[15] 崔杰, 肖灵, 王玥, 等. 一种用于数字助听器的WOLA滤波器组的设计准则[J]. 应用声学, 2010, 29(1):36-42.CUI J, XIAO L, WANG Y, et al. A kind of design criterion for WOLA filterbanks used in digital hearing aids[J]. Applied Acoustics, 2010, 29(1):36-42. (in Chinese)
[16] VARGA A, STEENEKEN H J M. Assessment for automatic speech recognition:Ⅱ. Noisex92:A database and an experiment to study the effect of additive noise on speech recognition systems[J]. Speech Communication, 1993, 12(3):247-251.
[1] ZHANG Yun, JIANG Nan, WANG Liping. Reliability analysis of NC rotary table based on a Wiener process for extremely small samples[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(2): 91-95.
[2] JI Jianchao, ZHANG Yu, WANG Mingxin. Optimization of acoustic sensor arrays for wind tunnel measurements[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 94-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd