Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (8) : 752-760     DOI: 10.16511/j.cnki.qhdxxb.2018.26.037
HYDRAULIC ENGINEERING |
Effect of turbulence models on the simulation of the flow in a complex asymmetric penstock
CHEN Wenchuang, ZHANG Rui, ZHANG Wenyuan, ZHANG Jinxiong, ZHANG Dong
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Download: PDF(5377 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This study analyzes the effects of various turbulence models on the hydrodynamic simulation accuracy and computing time for flow in a complex asymmetric penstock. The turbulence models used here for closure of the Reynolds-averaged Navier-Stokes (RANS) equations were the shear-stress-transport k-ω (SST k-ω), standard k-ε (Sk-ε), realizable k-ε (Rk-ε), renormalization group k-ε (RNG k-ε) and Reynolds stress model (RSM) models. The results show the differences in the velocity, turbulent kinetic energy, and water head loss predictions and the computing times for these five turbulence models. The predictions are compared with experimental data to show that the computing times and the differences between the numerical and experimental results vary with the flow conditions. The RSM results agree best with the experimental results, while the SST k-ω model costs less CPU time. Both the RSM and SST k-ω are found to be appropriate for calculating the hydraulic characteristics of the flow in the complex asymmetric penstock, depending on the available computing resources and the required accuracy. The Sk-ε, Rk-ε and RNG k-ε models all give lower accuracy predictions of the flow distribution, confluence and water head loss.
Keywords asymmetric penstock      hydraulic characteristics      turbulence models      accuracy      computing time     
Issue Date: 15 August 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Wenchuang
ZHANG Rui
ZHANG Wenyuan
ZHANG Jinxiong
ZHANG Dong
Cite this article:   
CHEN Wenchuang,ZHANG Rui,ZHANG Wenyuan, et al. Effect of turbulence models on the simulation of the flow in a complex asymmetric penstock[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 752-760.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.26.037     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I8/752
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] ADAMS K, WUTZKE C A, ARNOLD K, et al. 2017 hydropower status report[R]. London:International Hydropower Association, 2017.
[2] 苏凯, 李聪安, 伍鹤皋, 等. 水电站月牙肋钢岔管研究进展综述[J]. 水利学报, 2017, 48(8):968-976.SU K, LI C A, WU H G, et al. Review of the crescent-rib steel bifurcation of hydropower station[J]. Journal of Hydraulic Engineering, 2017, 48(8):968-976. (in Chinese)
[3] 李玲, 李玉梁, 黄继汤, 等. 三岔管内水流流动的数值模拟与实验研究[J]. 水利学报, 2001, 32(3):49-53.LI L, LI Y L, HUANG J T, et al. Numerical simulation and experimental study on water flow in Y-type tube[J]. Journal of Hydraulic Engineering, 2001, 32(3):49-53. (in Chinese)
[4] 刘沛清, 屈秋林, 王志国, 等. 内加强月牙肋三岔管水力特性数值模拟[J]. 水利学报, 2004, 35(3):42-46.LIU P Q, QU Q L, WANG Z G, et al. Numerical simulation on hydrodynamic characteristics of bifurcation pipe with internal crescent rib[J]. Journal of Hydraulic Engineering, 2004, 35(3):42-46. (in Chinese)
[5] 高学平, 张尚华, 韩延成, 等. 引水岔管水力特性三维数值计算[J]. 中国农村水利水电, 2005(12):93-97.GAO X P, ZHANG S H, HAN Y C, et al. 3-D numerical simulation of hydraulic characteristics in water diversion bifurcated pipes[J]. China Rural Water & Hydropower, 2005(12):93-97. (in Chinese)
[6] 王志国, 陈永兴. 西龙池抽水蓄能电站内加强月牙肋岔管水力特性研究[J]. 水力发电学报, 2007, 26(1):42-47.WANG Z G, CHEN Y X. Study on hydraulic characteristic of Escher-Wyss wyepiece of Xilongchi pumped storage power station[J]. Journal of Hydroelectric Engineering, 2007, 26(1):42-47. (in Chinese)
[7] 毛根海, 章军军, 程伟平, 等. 卜型岔管水力模型试验及三维数值计算研究[J]. 水力发电学报, 2005, 24(2):16-20, 51.MAO G H, ZHANG J J, CHENG W P, et al. Experimental study and 3-D numerical simulation on water flow in Y-type pipe[J]. Journal of Hydroelectric Engineering, 2005, 24(2):16-20, 51. (in Chinese)
[8] 戎贵文, 魏文礼, 刘玉玲. 分岔管道三维湍流水力特性数值模拟[J]. 水利学报, 2010, 41(4):398-405.RONG G W, WEI W L, LIU Y L. 3-D numerical simulation for hydraulic characteristics of turbulent flow in bifurcated duct[J]. Journal of Hydraulic Engineering, 2010, 41(4):398-405. (in Chinese)
[9] 董壮, 罗龙洪, 郑福寿. 岔管流动的数值模拟[J]. 河海大学学报(自然科学版), 2007, 35(1):14-17.DONG Z, LUO L H, ZHENG F S. Numerical simulation of flow in bifurcated pipes[J]. Journal of Hohai University (Natural Sciences), 2007, 35(1):14-17. (in Chinese)
[10] 陈文兵, 孙宏健, 齐央. 非对称三岔管水力特性数值计算与流态分析[J]. 水电能源科学, 2008, 26(5):71-74.CHEN W B, SUN H J, QI Y. Numerical calculation of hydraulic characteristics and analysis of flow state in asymmetric branch pipe[J]. Water Resources & Power, 2008, 26(5):71-74. (in Chinese)
[11] 郑源, 严继松, 张占, 等. 抽水蓄能电站引水岔管水力特性数值模拟[J]. 排灌机械, 2008, 26(2):45-48.ZHENG Y, YAN J S, ZHANG Z, et al. Numerical simulation on hydraulic characteristics in water diversion bifurcated pipes of pumped storage power station[J]. Drainage & Irrigation Machinery, 2008, 26(2):45-48. (in Chinese)
[12] 梁春光, 程永光. 基于CFD的抽水蓄能电站岔管水力优化[J]. 水力发电学报, 2010, 29(3):84-91.LIANG C G, CHENG Y G. Hydraulic optimization of pipe bifurcation of pumped-storage power station by CFD method[J]. Journal of Hydroelectric Engineering, 2010, 29(3):84-91. (in Chinese)
[13] 董家, 严根华, 杨兴义, 等. 月牙肋岔管群水力损失模型试验与数值模拟结果的比较[J]. 水电能源科学, 2016, 34(10):60-64.DONG J, YAN G H, YANG X Y, et al. Experimental research and numerical simulation comparison of unsymmetrical Y-type penstock for hydraulic loss[J]. Water Resources & Power, 2016, 34(10):60-64. (in Chinese)
[14] LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence[M]. London:Academic Press, 1972.
[15] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-εeddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3):227-238.
[16] YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence I:Basic theory[J]. Journal of Scientific Computing, 1986, 1(1):3-51.
[17] MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4(1):625-632.
[18] LAUNDER B E, REECE G J, RODI W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics, 1975, 68(3):537-566.
[19] 张文远. 某抽水蓄能电站钢筋混凝土高压岔管水力学特性研究物理模型试验[R]. 北京:中国水利水电科学研究院, 2017.ZHANG W Y. Experimental study on the hydraulic characteristics of a concrete penstock in a pumped-storage hydroelectric plant[R]. Beijing:China Institute of Water Resources and Hydropower Research, 2017. (in Chinese)
[20] 李玉梁, 李玲, 陈嘉范, 等. 抽水蓄能电站对称岔管的流动阻力特性[J]. 清华大学学报(自然科学版), 2003, 43(2):270-272, 280.LI Y L, LI L, CHEN J F, et al. Flow resistance characteristics of symmetric fork tube used in a storage-pumped hydroelectric plant[J]. Journal of Tsinghua University (Science and Technology), 2003, 43(2):270-272, 280. (in Chinese)
[21] 李玲, 陆豪, 陈嘉范. 抽水蓄能电站尾水岔管水流运动及阻力特性试验研究[J]. 水力发电学报, 2008, 27(3):101-104, 109.LI L, LU H, CHEN J F. Experimental research on current resistant characteristics of tail water fork tube in the pumped-storage hydroelectric plant[J]. Journal of Hydroelectric Engineering, 2008, 27(3):101-104, 109. (in Chinese)
[1] ZHANG Yun, CAO Cong, JIANG Zhong, WANG LiPing. Influence mechanism of the oil film contact surface error of the hydrostatic guide rail on the geometric error of the guide rail[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 52-61.
[2] SONG Yubo, ZHU Jingkai, ZHAO Lingqi, HU Aiqun. Centralized federated learning model based on model accuracy[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 832-841.
[3] CHEN Lu, GUAN Liwen, LIU Chun, CHEN Zhixiong, XUE Jun. Robotic hole drilling attitude correction method based on structured light 3-D visual measurements[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 149-155.
[4] WANG Liping, ZHANG Shizhen, WANG Dong. Geometric error measurement and accuracy verification of the swing head of a five-axis CNC machine tool with a single swing angle[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(4): 292-298.
[5] CHEN Qigang, ZHONG Qiang. Influence of time interval between particle images on the measurement accuracy of stereoscopic PIV[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 864-872.
[6] ZHANG Pengxiang, ZHOU Kai, LI Xuekun. Linkage modes switch for a six-axis linkage CNC machine tool[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(4): 291-297.
[7] HUANG Junhao, CHEN Yongqiang. Accuracy evaluation and correction of the element integration based on a geometric index in the boundary element method[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(11): 953-960.
[8] GUAN Liwen, CHEN Huang, FU Meng. Accuracy of the parallel reset mechanism in a wind tunnel balance calibration system[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 298-304.
[9] YANG Wenyu, LI Zhe, NI Guangheng, HONG Yang, Ali Zahraei. Evaluation of a radar-based storm nowcasting method in the Three Gorges[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(6): 604-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd