Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (11) : 1029-1036     DOI: 10.16511/j.cnki.qhdxxb.2018.26.041
NUCLEAR ENERGY AND NEW ENERGY |
AP1000 containment accident transient analysis using MELCOR
XIAO Hong1, CAO Zhiwei2, FENG Yingjie2, YANG Zhiyi1, ZHU Jianmin2
1. Nuclear and Radiation Safety Center, Ministry of Environmental protection, Beijing 100082, China;
2. China Nuclear Power Institute Co., Ltd., Shenzhen 518026, China
Download: PDF(1880 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The AP1000 containment and passive containment cooling system (PCS) were modeled using MELCOR 2.1 and SNAP with detailed 3D modeling to analyze the convective heat transfer, condensation and film evaporation for containment cooling. The film tracking model was used to simulate the PCS characteristics. The containment thermal hydraulic transients during a LOCA were analyzed to predict the main parameters at each stage after the accident. The effects of the film coverage fraction and the film coverage time were also studied. The results show that the MELCOR program can accurately simulate the thermal hydraulics of the AP1000 passive containment cooling system. The results provide a reference for analyzing the characteristics of the nuclear power plant containment system. This study also independently verifies the safety of this reactor design by using an analysis code that is totally different from the design codes.
Keywords transient      condensation heat transfer      passive containment cooling      film tracking     
Issue Date: 21 November 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Hong
CAO Zhiwei
FENG Yingjie
YANG Zhiyi
ZHU Jianmin
Cite this article:   
XIAO Hong,CAO Zhiwei,FENG Yingjie, et al. AP1000 containment accident transient analysis using MELCOR[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 1029-1036.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.26.041     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I11/1029
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] TILLS J, NOTAFRANCESCO A, PHILLIPS J. SAND2009-2858:Application of the MELCOR code to design basis PWR large dry containment analysis[R]. Washington:Sandia National Laboratories, 2009.
[2] TILLS J. MELCOR DBA containment audit calculations for the ESBWR plant[R]. Washington:Sandia National Laboratories, 2010.
[3] TILLS J, NOTAFRANCESCO A, LONGMIRE P. An assessment of MELCOR 1.8.6:Design basis accident tests of the Carolinas Virginia Tube Reactor (CVTR) containment (including selected separate effects tests)[R]. Washington:Sandia National Laboratories, 2008.
[4] 林诚格, 郁祖盛, 欧阳予. 非能动安全先进压水堆核电技术[M]. 北京:原子能出版社, 2010. LIN C G, YU Z S, OUYANG Y. Passive safety advanced PWR nuclear power technology[M]. Beijing:Atomic Energy Press, 2010. (in Chinese)
[5] 陈召林, 肖均, 郑继业, 等. 关于压水堆安全壳功能设计审评的相关问题探讨[J]. 核安全, 2013, 12(4):15-19. CHEN Z L, XIAO J, ZHENG J Y, et al. Discussion on relevant problems of PWR containment function design in safety review[J]. Nuclear Safety, 2013, 12(4):15-19. (in Chinese)
[6] 广东核电培训中心. 900MW压水堆核电站系统与设备[M]. 北京:原子能出版社, 2004. Guangdong Nuclear Power Training Center. 900MW PWR nuclear power plant system and equipment[M]. Beijing:Atomic Energy Press, 2004. (in Chinese)
[7] 张学学, 李桂馥, 史琳, 等. 热工基础:2版[M]. 北京:高等教育出版社, 2006. ZHANG X X, LI G F, SHI L, et al. Thermal foundation:2nd ed[M]. Beijing:Higher Education Press, 2006. (in Chinese)
[8] 俞冀阳, 贾宝山. AC600非能动安全壳冷却系统冷凝传热系数评价[J]. 核动力工程,1999, 20(3):214-218. YU J Y, JIA B S. Evaluation of condensation heat transfer coefficient in AC600 passive containment cooling system[J]. Nuclear Power Engineering, 1999, 20(3):214-218. (in Chinese)
[9] 叶成, 郑明光, 王勇, 等. AP1000非能动安全壳冷却水WGOTHIC分析[J]. 原子能科学技术, 2013, 47(12):2225-2230. YE C, ZHENG M G, WANG Y, et al. WGOTHIC analysis on AP1000 passive containment cooling water[J]. Atomic Energy Science and Technology, 2013, 47(12):2225-2230. (in Chinese)
[10] 王国栋, 杨建锋, 韦胜杰, 等. 应用GOTHIC程序三维模型模拟综合性能试验热工响应过程[J]. 原子能科学技术, 2017, 51(11):1960-1967. WANG G D, YANG J F, WEI S J, et al. Application of GOTHIC 3D model to simulate thermal-hydraulic response of containment safety verification via integral test[J]. Atomic Energy Science and Technology, 2017, 51(11):1960-1967. (in Chinese)
[11] 冷贵君, 余红星, 俞冀阳, 等. 先进堆非能动安全壳热工水力瞬态分析及研究[J]. 核动力工程, 2002, 23(S1):59-65. LENG G J, YU H X, YU J Y, et al. Transient analysis on heat transfer and hydraulic of passive containment vessel of advance PWR[J]. Nuclear Power Engineering, 2002, 23(S1):59-65. (in Chinese)
[12] 黄政. 垂直管内含不可凝气体蒸汽的冷凝换热MELCOR数值模拟[J]. 核动力工程, 2015, 36(1):127-131. HUANG Z. Simulation of steam condensation inside vertical tube with noncondensable gases using MELCOR[J]. Nuclear Power Engineering, 2015, 36(1):127-131.(in Chinese)
[13] Sandia National Laboratories. MELCOR Computer Code Manuals, Vol.2:Reference Manuals[M]. Washington:US Nuclear Regulatory Commission, 2011.
[14] 李胜强, 李卫华, 姜胜耀. 非能动安全壳外部冷却相似模拟[J]. 清华大学学报(自然科学版), 2012, 52(2):229-233. LI S Q, LI W H, JIANG S Y. Scaling for outer passive cooling channels of an advanced reactor containment[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(2):229-233. (in Chinese)
[15] 马俊贤, 石舒健, 秦治国, 等. CPR1000压水堆安全壳实时仿真模型研究[J]. 清华大学学报(自然科学版), 2013, 53(8):1172-1177. MA J X, SHI S J, QIN Z G, et al. Real-time dynamic model for the containment of a CPR1000 PWR nuclear power plant training simulator[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(8):1172-1177. (in Chinese)
[1] LIU Qian, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Numerical simulation of saturated steam condensation heat exchange in a vertical channel[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1273-1281.
[2] ZHANG Pengfei, DING Dengwei, YANG Xinzhi, LIU Yan, LI Xing, HE Liang. Monitoring and analysis of the auxiliary contact bounce of a gas-insulated switchgear circuit breaker according to transient voltage[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1164-1172.
[3] WANG Zhiqiang, LEI Zhenyu. Mechanism of corrugation on the track with Cologne egg fasteners based on transient contact characteristics[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1844-1855.
[4] LI Huokun, WAN Zihao, HUANG Wei, ZENG Min, FANG Jing, XIE Jie. Robust comprehensive evaluation of guide vane closure law in hydraulic turbines in moderately-high head hydropower plants[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 125-133.
[5] LU Yangping, MA Can, TAN Lei, HAN Yadong. Theoretical model of transient mixed-flow pump start-up[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1938-1944.
[6] JIANG Qirong, ZHAO Chongbin. Electromagnetic transient synchronization stability with grid-connected inverters[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 415-428.
[7] HUANG Wei, YANG Kailin, GUO Xinlei, MA Jiming, LI Jiazhen. Coordinated regulation of ball valves in pumped storage power stations for extreme conditions[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 635-644.
[8] YI Shuxian, YUAN Liqiang, LI Kai, SHEN Yu, ZHAO Zhengming. High-efficiency modeling method for regional energy routers[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 796-806.
[9] Li HAO,Yudong PAN,Bo LI,Jiansheng YUAN. Electromagnetic force calculations for ITER GDC electrodes using constraint equations[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 141-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd