Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (4) : 298-305     DOI: 10.16511/j.cnki.qhdxxb.2019.21.006
MECHANICAL ENGINEERING |
Unpredefined ball detection algorithm for humanoid soccer robots
ZHANG Jiwen1,2, SONG Libin1, XU Junjie1, SHI Xunlei1, LIU Li1,2
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Tsinghua Innovation Center in Dongguan, Dongguan, 523808, China
Download: PDF(5042 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Humanoid soccer robots need to adapt to the conditions in human soccer games such as detecting a soccer ball that does not have predefined characteristics such as a definite color and that may blend in with the playing field. For such conditions, the problem cannot be solved by classical detection strategies based on a single colorblock. In this study, the ball color is split into a specific color and a shared color. Two rounds of labelling are used to generate a color lookup table. Color-blocks obtained by pixel-level segmentation are used in a marco-pixel clustering method based on a connecting relationship graph to generate several ball candidates. The best ball object is estimated via the membership function by fuzzy logic. Tests show that the method is able to detect unpredefined balls even in a very disturbed environment and at large distances from the robot and is also able to avoid confusion with the border lines and other robots on the field without excessive computing requirements. The calculations can reach a high framerate of 15 frames per second. This strategy provides an efficient detection method using strictly limited computing resources for robot soccer players.
Keywords humanoid robot      computer vision      clustering      color labeling      fuzzy logic     
Issue Date: 09 April 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Jiwen
SONG Libin
XU Junjie
SHI Xunlei
LIU Li
Cite this article:   
ZHANG Jiwen,SONG Libin,XU Junjie, et al. Unpredefined ball detection algorithm for humanoid soccer robots[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(4): 298-305.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.21.006     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I4/298
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] NADARAJAH S, SUNDARAJ K. Vision in robot soccer:A review[J]. Artificial Intelligence Review, 2015, 44(3):289-310.
[2] JOSEPH R, DIVVALA S, GIRSHICK R, et al. You only look once:Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:779-788.
[3] JONATHAN L, EVAN S, TREVOR D. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015:3431-3440.
[4] RAHMAN A, WIDODO N S. Colored ball position tracking method for goalkeeper humanoid robot soccer[J]. Telecommunication Computing Electronics and Control, 2013, 11(1):11-16.
[5] TRIFAN A, NEVES A J R, CUNHA B, et al. UAVision:A modular time-constrained vision library for soccer robots[C]//Robot Soccer World Cup. Switzerland:Springer, Cham, 2014:490-501.
[6] 李晓瑜, 杨马英. 足球机器人视觉图像分割算法[J]. 吉林大学学报(工学版), 2013(s1):260-264. LI X Y, YANG M Y. Objective segmentation method of video image in robot soccer[J]. Journal of Jilin University (Engineering and Technology Edition), 2013(s1):260-264. (in Chinese)
[7] 杜鑫峰, 熊蓉, 褚健. 仿人足球机器人视觉系统快速识别与精确定位[J]. 浙江大学学报(工学版), 2009, 43(11):1975-1981. DU X F, XIONG R, CHU J, et al. Fast recognition and precise localization of humanoid soccer robot vision system[J]. Journal of Zhejiang University (Engineering Science). 2009, 43(11):1975-1981. (in Chinese)
[8] BUDDEN D, FENN S, WALKER J, et al. A novel approach to ball detection for humanoid robot soccer[C]//Australasian Joint Conference on Artificial Intelligence. Berlin Heidelberg:Springer, 2012:827-838.
[9] MAZZEO P L, SPAGNOLO P, LEO M, et al. Ball detection in soccer images using isophote's curvature and discriminative features[J]. Pattern Analysis and Applications, 2016, 19(3):709-718.
[10] BRUCE J, BALCH T, VELOSO M. Fast and inexpensive color image segmentation for interactive robots[C]//Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan:IEEE, 2000(3):2061-2066.
[11] ABUBAKER A, QAHWAJI R, IPSON S, et al. One scan connected component labeling technique[C]//IEEE International Conference on Signal Processing and Communications, Dubai, United Arab Emirates:IEEE, 2007:1283-1286.
[12] HARTL A, VISSER U, ROFER T. Robust and efficient object recognition for a humanoid soccer robot[C]//RoboCup 2013:Robot World Cup XVⅡ. Berlin Heidelberg:Springer, 2013:396-407.
[13] THRUN S. Probabilistic robotics[M]. Cambridge:MIT Press, 2006.
[14] 张继文, 刘莉, 陈恳. 小型仿人足球机器人MOS-7的系统设计及局部优化[J]. 清华大学学报(自然科学版), 2016, 56(8):811-817. ZHANG J W, LIU L, CHEN K. System design and local optimization of a small humanoid soccer robot MOS-7[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(8):811-817. (in Chinese)
[1] ZHAO Xingwang, HOU Zhedong, YAO Kaixuan, LIANG Jiye. Two-stage fusion multiview graph clustering based on the attention mechanism[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 1-12.
[2] WANG Liping, SHI Huijie, WANG Dong. Clustering and selection method of microservices for intelligent manufacturing[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 109-116.
[3] DU Yuji, FU Ming, DUANMU Weike, HOU Longfei, LI Jing. Risk assessment method of gas pipeline networks based on fuzzy analytic hierarchy process and improved coefficient of variation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 941-950.
[4] LI Congjian, GAO Hang, LIU Yi. Fast reconstruction of a wind field based on numerical simulation and machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 882-887.
[5] SUN Haobo, YANG Kaiming, ZHU Yu, LU Sen. Modal parameter estimates for a magnetic levitation planar motor based on density clustering[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 33-43.
[6] YU Yong, WANG Yinggang, LUO Zhengguo, YANG Yan, WANG Xinkai, GAO Tao, YU Qian. Link prediction algorithm based on clustering coefficient and node centrality[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 98-104.
[7] XIAO Xi, XU Chen. Speech feature fusion algorithm based on acoustic state likelihood and supervised state modelling[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 476-481.
[8] SHEN Jiarong, XU Qianjun. Prediction of interlayer shear strength parameters for RCC dams using artificial neural network and fuzzy logic system[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(5): 345-353.
[9] LUO Xinyuan, CHEN Xin, SHOU Lidan, CHEN Ke, WU Yanjing. Semantic trajectory extraction framework for indoor space[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 186-193.
[10] LI Zihao, TIAN Xiangliang, LI Zhongwen, ZHOU Wei, ZHOU Zhijie, ZHONG Maohua. Risk analysis of metro station passenger flow based on passenger flow patterns[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 854-860.
[11] MA Rui, GAO Haoran, DOU Bowen, WANG Xiajing, HU Changzhen. Control flow graph division based on an improved GN algorithm[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 15-22.
[12] SUO Mingliang, ZHOU Ding, AN Ruoming, LI Shunli. Neighborhood density grid clustering and its applications[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 732-739.
[13] ZHANG Xinyu, GAO Hongbo, ZHAO Jianhui, ZHOU Mo. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 438-444.
[14] CHEN Xiaofang, QIAN Yingcan, WANG Yalin, YANG Chunhua. Dynamic adjustment interval identification of hydrocracking based on principal component derivative feature clustering[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 81-86.
[15] WANG Jianrong, GAO Yongchun, ZHANG Ju, WEI Jianguo, DANG Jianwu. Automatic speech recognition by a Kinect sensor for a robot under ego noises[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 921-925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd