Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (9) : 737-743     DOI: 10.16511/j.cnki.qhdxxb.2019.21.025
ELECTRONIC ENGINEERING |
Spatially coupled LDPC-BCH codes in quantum secure direct communications
WANG Ping1, SUN Zhen1, YIN Liuguo2,3,4, LU Jianhua1,2
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Information Science and Technology, Tsinghua University, Beijing 100084, China;
3. Beijing National Research Center for Information Science and Technology, Beijing, 100084, China;
4. Key Laboratory of EDA, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
Download: PDF(4068 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Quantum secure direct communication systems are limited by high erasure probabilities and low receiving probabilities due to the high light source losses in the optical elements and optical fibers. A channel mitigation method based on spatially coupled LDPC-BCH codes is presented here to ensure reliable information transformations in quantum secure direct communication systems to resolve the problems of low-rate and Shannon limit-approaching code designs. Spatially coupled LDPC-BCH codes are constructed by coupling multiple identical block LDPC-BCH codes with edge spreading. The extrinsic information transfer functions of the spatially coupled LDPC-BCH code are analyzed to derive the decoding thresholds for the code ensembles. Simulations show that the spatially coupled LDPC-BCH codes have decoding thresholds closer to the Shannon limit with lower bit error rates than block LDPC-BCH codes. The spatially coupled LDPC-BCH code channel mitigation scheme has a transmitting efficiency of 0.001 and a bit error rate less than 10-6 when the channel receiving probability is set at 0.4%.
Keywords quantum secure direct communication      channel coding      spatially coupling      iterative decoding     
Issue Date: 27 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Ping
SUN Zhen
YIN Liuguo
LU Jianhua
Cite this article:   
WANG Ping,SUN Zhen,YIN Liuguo, et al. Spatially coupled LDPC-BCH codes in quantum secure direct communications[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(9): 737-743.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.21.025     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I9/737
  
  
  
  
  
  
[1] LONG G L, LIU X S. Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Physical Review A, 2002, 65(032302):1-3.
[2] NIU P H, ZHOU Z R, LIN Z S, et al. Measurement-device-independent quantum communication without encryption[J]. Science Bulletin, 2018, 63(20), 1345-1350.
[3] HU J Y, YU B, JING M Y, et al. Experimental quantum secure direct communication with single photons[J]. Light:Science & Applications, 2016, 5(e16144):1-5.
[4] ZHANG W, DING D S, SHENG Y B, et al. Quantum secure direct communication with quantum memory[J]. Physical Review Letters, 2017, 118(220501):1-6.
[5] QI R, SUN Z, LIN Z, et al. Implementation and security analysis of practical quantum secure direct communication[J]. Light:Science & Applications, 2018, 8(22):1-8.
[6] LI Q, QU X, YIN L, et al. Generalized low-density parity-check coding scheme with partial-band jamming[J]. Tsinghua Science and Technology, 2014, 19(2):203-210.
[7] KUDEKAR S, RICHARDSON T J, URBANKE R L. Threshold saturation via spatial coupling:Why convolutional LDPC ensembles perform so well over the BEC?[J]. IEEE Transaction on Information Theory, 57(2):803-834.
[8] SCHMALEN L, AREF V, CHO J, et al. Spatially coupled soft-decision error correction for future lightwave systems[J]. Journal of Lightwave Technology, 2015, 33(5):1109-1116.
[9] JOHNSON S, LECHNER G. Spatially coupled repeat- accumulate codes[J]. IEEE Communications Letters, 2013, 17(2):373-376.
[10] MOLOUDI S, LENTMAIER M, AMAT A G I. Spatially coupled turbo-like codes[J]. IEEE Transactions on Information Theory, 2017, 63(10):6199-6215.
[11] THORPE J. Low-density parity-check (LDPC) codes constructed from protographs[J]. The Interplanetary Network Progress Report, 2003, 42(154):1-7.
[12] MITCHELL D G M, LENTMAIER M, COSTELLO D J. Spatially coupled LDPC codes constructed from protographs[J]. IEEE Transactions on Information Theory, 2015, 61(9):4866-4889.
[13] 李琪, 曲欣茹, 殷柳国, 等. 基于蝶形流程图的分组码最大后验概率软判决译码方法[J]. 清华大学学报(自然科学版), 2014(12):1598-1603.LI Q, QU X R, YIN L G, et al. Butterfly-flow-graph based soft APP scheme for decoding block channel codes[J]. Journal of Tsinghua University (Science and Technology), 2014(12):1598-1603. (in Chinese).
[14] LENTMAIER M, TAVARES M B S, FETTWEIS G P. Exact erasure channel density evolution for protograph-based generalized LDPC codes[C]. IEEE International Symposium on Information Theory. Seoul, Korea:IEEE, 2009:566-570.
[15] PAOLINI E, FOSSORIER M P C, CHIANI M. Generalized and doubly generalized LDPC codes with random component codes for the binary erasure channel[J]. IEEE Transactions on Information Theory, 2010, 56(4):1651-1672.
[16] ASHIKHMIN A, KRAMER G, BRINK S. Extrinsic information transfer functions:Model and erasure channel properties[J]. IEEE Transactions on Information Theory, 2004, 50(11):2657-2673.
[17] IYENGAR A R, PAPALEO M, SIEGEL P H, et al. Windowed decoding of protograph-based LDPC convolutional codes over erasure channels[J]. IEEE Transactions on Information Theory, 2012, 58(4):2303-2320.
[1] LIN Meng, LI Yunzhou, XU Xibin, WANG Jing. Interference-mitigation based BICM-FBMC-ID receiver[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 872-877,883.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd