Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (10) : 854-860     DOI: 10.16511/j.cnki.qhdxxb.2019.21.028
PHYSICS AND ENGINEERING PHYSICS |
Risk analysis of metro station passenger flow based on passenger flow patterns
LI Zihao1, TIAN Xiangliang1, LI Zhongwen2, ZHOU Wei2, ZHOU Zhijie2, ZHONG Maohua1
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Shenzhen Metro Co., Ltd, Shenzhen 518026, China
Download: PDF(8029 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The safe operation and management of metro systems are related to the metro station design and the passenger flow rates into and out of stations and between stations. This study examines the passenger flow rates in and out of each station at various times on various days by filtering and standardizing the automatic fare collection (AFC) system data of the Shenzhen metro system. The data was analyzed using a principle component analysis (PCA) and a Gaussian mixture model (GMM) to cluster passenger movement data on weekdays and weekends to simplify analysis of the passenger flow patterns. The results were then used to identify time periods and types of metro stations having greater risks as a passenger flow risk analysis method for metro stations. This big data analysis can identify risk conditions for large passenger volumes to avoid mass incidents like stampedes so as to protect passenger safety.
Keywords metro stations      big data      clustering      travel patterns      risk analyses     
Issue Date: 14 October 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zihao
TIAN Xiangliang
LI Zhongwen
ZHOU Wei
ZHOU Zhijie
ZHONG Maohua
Cite this article:   
LI Zihao,TIAN Xiangliang,LI Zhongwen, et al. Risk analysis of metro station passenger flow based on passenger flow patterns[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 854-860.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.21.028     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I10/854
  
  
  
  
  
  
  
  
  
  
  
[1] 顾保南, 杨照, 徐雷, 等. 1997-2017年中国城市轨道交通发展统计分析[J]. 城市轨道交通研究, 2018, 21(5):85-89.GU B N, YANG Z, XU L, et al. Statistical analysis of urban rail transit lines in China from 1997 to 2017[J]. Urban Mass Transit, 2018, 21(5):85-89. (in Chinese)
[2] RATTI C, PULSELLI R M, WILLIAMS S, et al. Mobile landscapes:Using location data from cell phones for urban analysis[J]. Environment & Planning B-Planning & Design, 2006, 33(5):727-748.
[3] GONZALEZ M C, HIDALGO C A, BARABASI A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453:779-782.
[4] ANAS A, ARNOTT R, SMALL K A. Urban Spatial Structure[J]. Journal of Economic Literature, 1998, 36(3):1426-1464.
[5] 曹瑞, 涂伟, 巢佰崇, 等. 基于智能卡数据的地铁周边职住用地识别与分析[J]. 测绘地理信息, 2016, 41(3):74-78.CAO R, TU W, CHAO B C, et al. Identification and analysis of home and work regions in the vicinity of metro stations using smart card data[J]. Journal of Geomatics, 2016, 41(3):74-78. (in Chinese)
[6] XIAO J Y, SHEN Y J, GE J F, et al. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing[J]. Landscape & Urban Planning, 2006, 75(1):69-80.
[7] ZHOU S H, DENG L F, HUANG M Y. Spatial analysis of commuting mode choice in Guangzhou, China[J]. Chinese Geographical Science, 2013, 23(3):353-364.
[8] CHOI J, LEE Y J, KIM T, et al. An analysis of metro ridership at the station-to-station level in Seoul[J]. Transportation, 2012, 39(3):705-722.
[9] READES J, ZHONG C, MANLEY E, et al. Finding pearls in London's oysters[J]. Built Environment, 2016, 42(3):365-381.
[10] 金磊, 彭建, 柳昆, 等. 城市地铁车站分类理论及方法研究[J]. 地下空间与工程学报, 2010, 6(S1):1339-1342+1375.JIN L, PENG J, LIU K, et al. Sorting theory and investigation of urban metro station[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(S1):1339-1342, 1375. (in Chinese)
[11] 尹芹, 孟斌, 张丽英. 基于客流特征的北京地铁站点类型识别[J]. 地理科学进展, 2016, 35(1):126-134.YIN Q, MENG B, ZHANG L Y. Classification of subway stations in Beijing based on passenger flow characteristics[J]. Progress in Geography, 2016, 35(1):126-134. (in Chinese)
[12] 高勃, 秦勇, 肖雪梅, 等. 基于K-means的北京地铁路网重要度聚类分析[J]. 交通运输系统工程与信息, 2014, 14(3):207-213.GAO B, QIN Y, XIAO X M, et al. K-means clustering analysis of key nodes and edges in Beijing subway network[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(3):207-213. (in Chinese)
[13] 冷彪, 赵文远. 基于客流数据的区域出行特征聚类[J]. 计算机研究与发展, 2014, 51(12):2653-2662.LENG B, ZHAO W Y. Region ridership characteristic clustering using passenger flow data[J]. Journal of Computer Research and Development, 2014, 51(12):2653-2662. (in Chinese)
[14] 余丽洁, 李岩, 陈宽民. 基于谱聚类的城市轨道站点分类方法[J]. 交通信息与安全, 2014, 32(1):122-125, 129.YU L J, LI Y, CHEN K M. Using spectral clustering for urban rail station classification[J]. Journal of Transport Information and Safety, 2014, 32(1):122-125, 129. (in Chinese)
[15] KUSAKABE T, ASAKURA Y. Behavioural data mining of transit smart card data:A data fusion approach[J]. Transportation Research Part C:Emerging Technologies, 2014, 46:179-191.
[16] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016.ZHOU Z H. Machine learning[M]. Beijing:Tsinghua University Press, 2016. (in Chinese)
[1] ZHAO Xingwang, HOU Zhedong, YAO Kaixuan, LIANG Jiye. Two-stage fusion multiview graph clustering based on the attention mechanism[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 1-12.
[2] WANG Liping, SHI Huijie, WANG Dong. Clustering and selection method of microservices for intelligent manufacturing[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 109-116.
[3] FAN Xiaoliang, PENG Zhaopeng, ZHENG Chuanpan, WANG Cheng. Spatio-temporal correlation mining method for large-scale traffic networks[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1317-1325.
[4] DU Yuji, FU Ming, DUANMU Weike, HOU Longfei, LI Jing. Risk assessment method of gas pipeline networks based on fuzzy analytic hierarchy process and improved coefficient of variation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 941-950.
[5] LI Congjian, GAO Hang, LIU Yi. Fast reconstruction of a wind field based on numerical simulation and machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 882-887.
[6] SUN Haobo, YANG Kaiming, ZHU Yu, LU Sen. Modal parameter estimates for a magnetic levitation planar motor based on density clustering[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 33-43.
[7] DING Guangyao, CHEN Qihang, XU Chen, QIAN Weining, ZHOU Aoying. Model sharing for GPU-accelerated DNN inference in big data processing systems[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1435-1441.
[8] WEI Zeyang, LIU Yi, WANG Chunyan, ZHANG Jia, BIAN Jiang, YAO Linjie, LIN Sijie, EWE Kaijie. Environmental computing: Concept, evolution, and challenges[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1839-1850.
[9] BA Rui, ZHANG Yudong, LIU Yi, ZHANG Hui. Three-layer and four-domainscenario analysis method and its application to urban complex disasters[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1579-1590.
[10] YU Yong, WANG Yinggang, LUO Zhengguo, YANG Yan, WANG Xinkai, GAO Tao, YU Qian. Link prediction algorithm based on clustering coefficient and node centrality[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 98-104.
[11] WANG Fei, LIU Jinfei, YIN Xishuang, TAN Yaosheng, ZHOU Tiangang, YANG Zhiyue, FENG Bo, YANG Xiaolong. Intelligent scheduling for high arch dams[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 756-767.
[12] ZHENG Menglei, TIAN Ling. Digital product twin modeling of massive dynamic data based on a time-series database[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1281-1288.
[13] SHU Xueming, YAN Jun, HU Jun, WU Jinjin, DENG Boyu. Risk assessment model for building fires based on a Bayesian network[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(4): 321-327.
[14] XIAO Xi, XU Chen. Speech feature fusion algorithm based on acoustic state likelihood and supervised state modelling[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 476-481.
[15] ZHANG Jiwen, SONG Libin, XU Junjie, SHI Xunlei, LIU Li. Unpredefined ball detection algorithm for humanoid soccer robots[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(4): 298-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd