Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (5) : 403-408     DOI: 10.16511/j.cnki.qhdxxb.2019.22.002
AUTOMATION |
Gradient feature-based model predictive controlalgorithm of distribution processes
WANG Xin, XU Zuhua, ZHAO Jun, SHAO Zhijiang
National Center for International Research on Quality-Targeted Process Optimization and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
Download: PDF(1045 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In the control of distribution processes, the traditional integral square error performance index only considers the area between the output curve and the target curve, which ignores the structural features of the distribution curve. A gradient feature-based model predictive control algorithm that takes into account the curve similarities is developed for distribution processes. The algorithm first models the distribution process curve with B-splines. Then, the algorithm quantifies the similarity between the curves based on gradient features and optimizes the design by combining numerical and gradient information. The composite trapezoidal rule is then used to discretize the optimization proposition. Finally, the optimization proposition is solved to get the optimal solution. Simulations show that this algorithm improves the similarity between the output curve and the target curve during curve switching with natural transitions of the curve shape.
Keywords model predictive control      distribution process      curve similarity      gradient feature     
Issue Date: 14 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xin
XU Zuhua
ZHAO Jun
SHAO Zhijiang
Cite this article:   
WANG Xin,XU Zuhua,ZHAO Jun, et al. Gradient feature-based model predictive controlalgorithm of distribution processes[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(5): 403-408.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.22.002     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I5/403
  
  
  
  
  
  
  
  
[1] CONGALIDIS J P, RICHARDS J R. Process control of polymerization reactors:An industrial perspective[J]. Polymer Reaction Engineering, 1998, 6(2):71-111.
[2] SAYER C, ARZAMENDI G, ASUA J M, et al. Dynamic optimization of semicontinuous emulsion copolymerization reactions:Composition and molecular weight distribution[J]. Computers & Chemical Engineering, 2001, 25(4-6):839-849.
[3] ALI M A, AJBAR E A A H, ALHUMAIZI K. Control of molecular weight distribution of polyethylene in gas-phase fluidized bed reactors[J]. Korean Journal of Chemical Engineering, 2010, 27(1):364-372.
[4] WANG H. Bounded dynamic stochastic distributions:Modelling and control[M]. London, UK:Springer-Verlag, 2000.
[5] WANG H. Robust control of the output probability density functions for multivariable stochastic systems[C]//Proceedings of the 37th IEEE Conference on Decision and Control. Piscataway, USA:IEEE Press, 1998:1305-1310.
[6] WANG H. Model reference adaptive control of the output stochastic distributions for unknown linear stochastic systems[J]. International Journal of Systems Science, 1999, 30(7):707-715.
[7] YUE H, WANG H, ZHANG J F. Shaping of molecular weight distribution by iterative learning probability density function control strategies[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2008, 222(7):639-653.
[8] ZHANG J F, YUE H, ZHOU J L. Predictive PDF control in shaping of molecular weight distribution based on a new modeling algorithm[J]. Journal of Process Control, 2015, 30:80-89.
[9] VICENTE M, SAYER C, LEIZA J R, et al. Dynamic optimization of non-linear emulsion copolymerization systems:Open-loop control of composition and molecular weight distribution[J]. Chemical Engineering Journal, 2002, 85(2-3):339-349.
[10] 申珊华, 曹柳林, 王晶. 基于分布函数矩的聚合物分子量分布预测控制[J]. 化工学报, 2013, 64(12):4379-4384. SHEN S H, CAO L L, WANG J. Predictive control of molecular weight distribution in polymerization reaction based on moment of MWD[J]. Journal of Chemical Industry and Engineering (China), 2013, 64(12):4379-4384. (in Chinese)
[11] CAO L L, LI D Z, ZHANG C Y, et al. Control and modeling of temperature distribution in a tubular polymerization process[J]. Computers & Chemical Engineering, 2007, 31(11):1516-1524.
[12] ZHOU J L, LI G, WANG H. Robust tracking controller design for non-Gaussian singular uncertainty stochastic distribution systems[J]. Automatica, 2014, 50(4):1296-1303.
[13] BUEHLER E A, PAULSON J A, MESBAH A. Lyapunov-based stochastic nonlinear model predictive control:Shaping the state probability distribution functions[C]//2016 American Control Conference. Philadelphia, USA:American Automatic Control Council, 2016:5389-5394.
[14] 康岳群, 徐祖华, 赵均, 等. 分布曲线对象的无偏模型预测控制算法[J]. 化工学报, 2016, 67(3):701-706. KANG Y Q, XU Z H, ZHAO J, et al. Offset-free model-predictive control algorithm of distribution process[J]. Journal of Chemical Industry and Engineering (China), 2016, 67(3):701-706. (in Chinese)
[1] XU Zuhua, HUANG Yanchun, CHEN Minghao, ZHAO Jun, SHAO Zhijiang. Fast predictive control algorithm based on an FPAA analog neural network[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(5): 394-402.
[2] XIE Haiming, LIN Chengtao, LIU Tao, TIAN Guangyu, HUANG Yong. Piecewise tracking energy optimization approach for an extended-range electric city bus[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 476-482.
[3] HU Manjiang, XU Biao, QIN Hongmao, XU Cheng, DING Ke, WANG Jianqiang. MPC based longitudinal coordinated collision avoidance for multiple connected vehicles[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1280-1286.
[4] WANG Zhenlei, LIU Xueyan, WANG Xin. Economic performance design based on adaptive iterative learning control of MPC systems[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(9): 1016-1024.
[5] LIU Changchun, DU Dong, PAN Jiluan. Predictive control for lane control systems using a small deviation model[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1087-1092.
[6] Jian LUO,Yugong LUO,Wenbo CHU,Shuwei ZHANG,Keqiang LI. Stability control of distributed drive electric vehicles based on traction and brake force coordination control[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 729-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd