Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (1) : 44-52     DOI: 10.16511/j.cnki.qhdxxb.2019.22.004
INFORMATION SECURITY |
Intrusion detection method based on a deep convolutional neural network
ZHANG Sicong1, XIE Xiaoyao2, XU Yang2
1. School of Computer Science and Technology, Guizhou University, Guiyang 550025, China;
2. Key Laboratory of Information and Computing Science of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
Download: PDF(4677 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This paper presents an intrusion detection method based on a deep convolutional neural network (dCNN) to improve the detection accuracy and efficiency of intrusion detection systems. This method uses deep learning to design the deep intrusion detection model including the tanh, Dropout, and Softmax algorithms. The method first transforms the one-dimensional raw intrusion data into two-dimensional "image" data using data padding. Then, the method uses dCNN to learn effective features from the data and the Softmax classifier to generate the final detection result. The method was implemented on a Tensorflow-GPU and evaluated on a Nvidia GTX 1060 3 GB GPU using the ADFA-LD and NSL-KDD datasets. Tests show that this method has shorter training time, improved detection accuracy, and lower false alarm rates. Thus, this method enhances the real-time processing and detection efficiency of intrusion detection systems.
Keywords cyber space security      deep learning      intrusion detection      convolutional neural network     
Issue Date: 16 January 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Sicong
XIE Xiaoyao
XU Yang
Cite this article:   
ZHANG Sicong,XIE Xiaoyao,XU Yang. Intrusion detection method based on a deep convolutional neural network[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 44-52.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.22.004     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I1/44
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] CREECH G, HU J K. Generation of a new IDS test dataset:Time to retire the KDD collection[C]//2013 IEEE Wireless Communications and Networking Conference (WCNC). Shanghai, China, 2013:4487-4492.
[2] SHONE N, NGOC T N, PHAI V D, et al. A deep learning approach to network intrusion detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(1):41-50.
[3] YI Y A, MIN M M. An analysis of random forest algorithm based network intrusion detection system[C]//2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). Kanazawa, Japan, 2017:127-132.
[4] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
[5] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing System. Lake Tahoe, USA:Curran Associates, 2012:1097-1105.
[7] LIANG Z, ZHANG G, HUANG J X, et al. Deep learning for health-care decision making with EMRs[C]//IEEE International Conference on Bioinformatics & Biomedicine. Washington DC, USA, 2015:556-559.
[8] LUCKOW A, COOK M, ASHCRAFT N, et al. Deep learning in the automotive industry:Applications and tools[C]//2016 IEEE International Conference on Big Data. Boston, USA, 2017:3759-3768.
[9] LEE H, KIM Y, KIM C O. A deep learning model for robust wafer fault monitoring with sensor measurement noise[J]. IEEE Transactions on Semiconductor Manufacturing, 2017, 30(1):23-31.
[10] YU Y, LONG J, CAI Z P. Session-based network intrusion detection using a deep learning architecture[M]//TORRA V, NARUKAWA Y, HONDA A, et al. Modeling decisions for artificial intelligence. Berlin, Germany:Springer, 2017:144-155.
[11] ALRAWASHDEH K, PURDY C. Toward an online anomaly intrusion detection system based on deep learning[C]//15th IEEE International Conference on Machine Learning and Application. Anaheim, USA, 2016:195-200.
[12] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[13] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]//Proceedings of the 19th International Conference on Neural Information Processing System. Cambridge, USA:MIT Press, 2006, 19:153-160.
[14] KIM J, SHIN N, JO S Y, et al. Method of intrusion detection using deep neural network[C]//Proceedings of 2017 IEEE International Conference on Big Data and Smart Computing. Jeju, Republic of Korea, 2017:313-316.
[15] KINGMA D, BA J. ADAM:A method for stochastic optimization[J/OL]. (2017-01-30)[2018-05-03]. https://arxiv.org/abs/1412.6980v9.
[16] JAVAID A, NIYAZ Q, SUN W Q, et al. A deep learning approach for network intrusion detection system[C]//9th EAI International Conference on Bio-Inspired Information and Communications Technologies. New York, USA, 2015:21-26.
[17] DONG B, WANG X. Comparison deep learning method to traditional methods using for network intrusion detection[C]//8th IEEE International Conference on Communication Software and Networks. Beijing, China, 2016:581-585.
[18] HOU S F, SAAS A, CHEN L F, et al. Deep4MalDroid:A deep learning framework for Android malware detection based on linux kernel system call graphs[C]//2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops. Omaha, USA, 2017:104-111.
[19] YUAN Z L, LU Y Q, XUE Y B. Droiddetector:Android malware characterization and detection using deep learning[J]. Tsinghua Science and Technology, 2016, 21(1):114-123.
[20] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
[21] CREECH G. ADFA-LD[Z/OL].[2018-05-03]. https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-IDS-Datasets/.
[22] TAVALLAEE M, BAGHERI E, LU W, et al. NSL-KDD[Z/OL].[2018-05-03]. http://www.unb.ca/cic/datasets/nsl.html.
[23] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[24] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, USA:MIT Press, 2016.
[25] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4):212-223.
[26] CREECH G, HU J K. A semantic approach to host-based intrusion detection systems using contiguous and discontiguous system call patterns[J]. IEEE Transactions on Computers, 2014, 63(4):807-819.
[27] BLONDEL M, BRUCHER M, BUITINCK L, et al. Scikit-learn[Z/OL].[2018-05-03]. http://scikit-learn.org/stable/.
[28] TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]//2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. Ottawa, Canada, 2009:53-58.
[29] MCHUGH J. Testing intrusion detection systems:A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory[J]. ACM Transactions on Information and System Security, 2000, 3(4):262-294.
[1] YANG Bo, QIU Lei, WU Shu. A collaborative filtering model based on heterogeneous graph neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1339-1349.
[2] HUANG Ben, KANG Fei, TANG Yu. A real-time detection method for concrete dam cracks based on an object detection algorithm[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1078-1086.
[3] CHEN Bo, ZHANG Hua, CHEN Yongcan, LI Yonglong, XIONG Jinsong. Semantic segmentation method of hydraulic structure crack based on feature enhancement[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1135-1143.
[4] DU Xiaochuang, LIANG Manchun, LI Ke, YU Yancheng, LIU Xin, WANG Xiangwei, WANG Rudong, ZHANG Guojie, FU Qi. A gamma radionuclide identification method based on convolutional neural networks[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 980-986.
[5] DENG Qing, ZHANG Bo, LI Yihao, ZHOU Liang, ZHOU Zhengqing, JIANG Huiling, GAO Yang. Crowd counting model for evacuation scenarios based on a cascaded CNN[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 146-152.
[6] MIAO Xupeng, ZHANG Minxu, SHAO Yingxia, CUI Bin. PS-Hybrid: Hybrid communication framework for large recommendation model training[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1417-1425.
[7] MEI Jie, LI Qingbin, CHEN Wenfu, WU Kun, TAN Yaosheng, LIU Chunfeng, WANG Dongmin, HU Yu. Overtime warning of concrete pouring interval based on object detection model[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 688-693.
[8] GUAN Zhibin, WANG Xiaomeng, XIN Wei, WANG Jiajie. Data generation and annotation method for source code defect detection[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1240-1245.
[9] WANG Xiaomeng, GUAN Zhibin, XIN Wei, WANG Jiajie. Source code defect detection using deep convolutional neural networks[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1267-1272.
[10] HAN Kun, PAN Haiwei, ZHANG Wei, BIAN Xiaofei, CHEN Chunling, HE Shuning. Alzheimer's disease classification method based on multi-modal medical images[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 664-671,682.
[11] WANG Zhiguo, ZHANG Yujin. Anomaly detection in surveillance videos: A survey[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 518-529.
[12] JIANG Wenbin, WANG Hongbin, LIU Pai, CHEN Yuhao. Hybrid computational strategy for deep learning based on AVX2[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 408-414.
[13] YU Chuanming, YUAN Sai, HU Shasha, AN Lu. Deep learning multi-language topic alignment model across domains[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 430-439.
[14] SONG Xinrui, ZHANG Xianqi, ZHANG Zhan, CHEN Xinhao, LIU Hongwei. Multi-sensor data fusion for complex human activity recognition[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 814-821.
[15] LIN Peng, WEI Pengcheng, FAN Qixiang, CHEN Wenqi. CNN model for mining safety hazard data from a construction site[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 628-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd