Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (11) : 887-894     DOI: 10.16511/j.cnki.qhdxxb.2019.22.009
CIVIL ENGINEERING |
Performance evaluation of the Allan variance method for ring laser gyroscope noise analyses
LI Qi1, BAI Zhengdong1, ZHAO Sihao2, DAI Dongkai3, XING Haifeng4
1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
3. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
4. Department of Precision Instrument, Tsinghua University, Beijing 100084, China
Download: PDF(3129 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The Allan variance method for various types of gyroscopes in various conditions was evaluated for ring laser gyroscope (RLG) noise at room temperature (~25℃) and steady conditions with analyses of the minor RLG noise terms besides the 5 major noise terms. Tests of a Chinese RLG and the widely used MPU 9250 micro-electro-mechanical systems (MEMS) inertial measurement unit (IMU) for static and dynamic conditions show that the Allan variance method can be used to estimate the main noise terms of various types of gyroscopes for static conditions to set the Kalman filter parameters for integrated global navigation satellite system/inertial navigation system (GNSS/INS) with the parameter values depending on the degree of understanding of the gyroscope physics. Several conclusions are given to supplement the classical Allan variance method in the IEEE Standard Specification Format Guide and Test Procedure for Single Axis Interferometric Fiber Optic Gyros. The wide applicability of the Allan variance method is contrasted with some commonly used data analysis methods. The Allan variance method has been widely recognized for metrology of precise instruments to improve the design and manufacture of precise instruments and to improve the precision of inertial measurements.
Keywords ring laser gyroscope (RLG)      micro-electro-mechanical systems (MEMS) inertial measurement unit (IMU)      MPU 9250      Allan variance (AVAR)      assessment     
Issue Date: 19 November 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Qi
BAI Zhengdong
ZHAO Sihao
DAI Dongkai
XING Haifeng
Cite this article:   
LI Qi,BAI Zhengdong,ZHAO Sihao, et al. Performance evaluation of the Allan variance method for ring laser gyroscope noise analyses[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(11): 887-894.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.22.009     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I11/887
  
  
  
  
  
  
  
  
[1] ALLAN D W, LEVINE J. A historical perspective on the development of the Allan variances and their strengths and weaknesses[J]. IEEE Transactions on Ultrasonics, Ferroelectrics & Frequency Control, 2016.63(4):513-519.
[2] ALLAN D W. Statistics of atomic frequency standards[J]. Proceedings of the IEEE, 1966, 54(2):221-230.
[3] IEEE. IEEE standard specification format guide and test procedure for single axis interferometric fiber optic gyros:IEEE Std 647-2006[S]. Piscataway, USA:IEEE, 2006.
[4] 严恭敏, 李四海, 秦永元. 惯性仪器测试与数据分析[M]. 北京:国防工业出版社, 2012. YAN G M, LI S H, QIN Y Y. Instrument test and data analysis of inertial devices[M]. Beijing:National Defense Industry Press, 2012. (in Chinese)
[5] 危志英, 汪世林. 基于Allan方差方法激光陀螺仪性能评价方法[C]//全国第12届空间及运动体控制技术学术年会论文集. 北京:北京自动控制设备研究所, 2006:500-504. WEI Z Y, WANG S L. Performance evaluation method of laser gyroscope based on Allan variance method[C]//Proceedings of the 12th Annual Conference on Space and Motion Control Technology. Beijing:Beijing Institute of Automatic Control Equipment, 2006:500-504. (in Chinese)
[6] 刘巧光, 许辅义, 滕云鹤, 等. 环形激光陀螺仪随机误差模型的研究[J]. 清华大学学报(自然科学版), 1999, 39(2):71-74. LIU Q G, XU F Y, TENG Y H, et al. Investigation on random error model of ring laser gyro[J]. Journal of Tsinghua University (Science and Technology), 1999, 39(2):71-74. (in Chinese)
[7] EL-SHEIMY N, HOU H, NIU X. Analysis and modeling of inertial sensors using Allan variance[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(1):140-149.
[8] 赵思浩, 陆明泉, 冯振明. MEMS惯性器件误差系数的Allan方差分析方法[J]. 中国科学:物理学力学天文学, 2010, 40(5):672-675. ZHAO S H, LU M Q, FENG Z M. Allan variance analysis on error coefficients of MEMS inertial components[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2010, 40(5):672-675. (in Chinese)
[9] ZHANG Q, NIU X, CHEN Q, et al. Using Allan variance to evaluate the relative accuracy on different time scales of GNSS/INS systems[J]. Measurement Science and Technology, 2013, 24(8):085006.
[10] 张小红, 朱锋, 薛学铭, 等. 利用Allan方差分析GPS非差随机模型特性[J]. 测绘学报, 2015, 44(2):119-127. ZHANG X H, ZHU F, XUE X M, et al. Using Allan variance to analyze the zero-differenced stochastic model characteristics of GPS[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):119-127. (in Chinese)
[11] 刘乾坤, 隋立芬, 陈泉余, 等. 基于Allan方差的BDS随机误差分析[J]. 测绘通报, 2016(5):18-21, 65. LIU Q K, SUI L F, CHEN Q Y, et al. Stochastic errors analysis of BDS based on Allan variance[J]. Bulletin of Surveying and Mapping, 2016(5):18-21, 65. (in Chinese)
[12] 吴富梅, 张晓东. 几种不同时频分析法对INS信号的分析和比较[J]. 测绘科学技术学报, 2010, 27(2):92-96. WU F M, ZHANG X D. Analysis and comparison of INS signal based on several methods[J]. Journal of Geomatics Science and Technology, 2010, 27(2):92-96. (in Chinese)
[13] 吕品, 刘建业, 赖际舟, 等. 光纤陀螺的随机误差性能评价方法研究[J]. 仪器仪表学报, 2014, 35(2):412-418. LV P, LIU J Y, LAI J Z, et al. Research on the performance evaluation methods of fiber optical gyro stochastic errors[J]. Chinese Journal of Scientific Instrument, 2014, 35(2):412-418. (in Chinese)
[14] DU X, ZENG C, LI H. Comparison of random error analysis methods for fiber optic gyro based on Allan variance[J]. Science Discovery, 2017, 5(5):375-379.
[15] SENSONOR. STIM210 datasheet[EB/OL]. (2018-08-01)[2019-09-10]. https://www.sensonor.com/products/gyro-modules/stim210/.
[16] 张代兵. 一种基于Allan方差方法的激光陀螺性能评价方法[J]. 仪器仪表学报, 2004(S1):715-717. ZHANG D B. Laser gyro performance estimate method based on Allan variance[J]. Chinese Journal of Scientific Instrument, 2004(S1):715-717. (in Chinese)
[17] REHDERJ. IMU noise model[EB/OL]. (2016-10-11)[2019-09-11]. https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model.
[1] ZHAO Guangsheng, NIU Xiaojing. Tsunami hazard assessment to South China Sea Islands induced by the earthquake with maximum possible magnitude in the Manila subduction zone[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 612-618.
[2] DU Yuji, FU Ming, DUANMU Weike, HOU Longfei, LI Jing. Risk assessment method of gas pipeline networks based on fuzzy analytic hierarchy process and improved coefficient of variation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 941-950.
[3] HU Jun, SHU Xueming, XIE Xuecai, YAN Jun, ZHANG Lei. Building fire insurance premium rate based on quantitative risk assessment[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 775-782.
[4] CHEN Changkun, SUN Fenglin. Flood damage assessments based on entropy weight-grey relational analyses[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1067-1073.
[5] YANG Hongyu, ZHANG Zixin, ZHANG Liang. Network security situation assessments with parallel feature extraction and an improved BiGRU[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 842-848.
[6] LI Zhengzhao, FU Dafang, WANG Junxian, MIN Kedong, ZHANG Junyu. Urban resilience assessment model for waterlogging disasters and its application[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 266-276.
[7] SUN Jing, WU Junyi, ZHAO Xiuli. Damage of multi-ribbed composite wall cell after high temperatures[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 285-293.
[8] SHEN Kaixin, HE Zhichao, WENG Wenguo. Synergistic physical effects of domino accidents in the chemical industry[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1559-1570.
[9] SU Xin, SHAO Weiwei, LIU Jiahong, JIANG Yunzhong, SHAO Rui, WANG Kaibo. Dynamic assessment of economic losses from flood disasters based on scenario simulations[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1606-1617.
[10] ZHOU Yiqi, TIAN Xiangliang, ZHONG Maohua. Assessment of natural disaster emergency relief demand based on Microblog data[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1626-1635.
[11] LI Shaopan, ZHAO Fei, ZHOU Yiqi, TIAN Xiangliang, HUANG Hong. Analysis of public opinion and disaster loss estimates from typhoons based on Microblog data[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 43-51.
[12] LIU Youzhi, ZHANG Guoxin, TAN Yaosheng, LIU Chunfeng, GONG Pan, PEI Lei. Key techniques for dam construction simulations[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 714-723.
[13] WANG Yanzhe, ZHOU Sheng, WANG Yu, QIN Xuying, CHEN Fubing, OU Xunmin. Comprehensive assessment of the environmental impact of China's nuclear and other power generation technologies[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(4): 377-384.
[14] YANG Hongyu, WANG Fengyan, L�Weili. Network security threat assessment method based on unsupervised generation reasoning[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 474-484.
[15] ZHANG Mingyuan, WU Wei, SONG Yubo, HU Aiqun. Security level evaluation system for wireless local area network access devices[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 371-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd