Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (8) : 670-682     DOI: 10.16511/j.cnki.qhdxxb.2019.22.015
AEROSPACE ENGINEERING |
Geometric design and characteristic analysis of herringbone face gears
FENG Guangshuo, GU Yongpeng, LAN Xudong, ZHOU Ming
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(6853 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A herringbone face-gear drive was developed in this project. The design of the herringbone face-gear geometry used the entire tooth surface precise modeling method. A geometry shaper was modeled mathematically with a precise, three-dimensional mathematical model then developed for the herringbone face-gear pairs. The loaded tooth contact analysis (LTCA) method was used to analyze the characteristics of the herringbone face-gear drives, including the tooth contact area, the axial force on the pinion gear, the contact ratio, the transmission error, the effect of the inner and outer face widths, and the effect of the inner and outer tooth phases. A numerical study shows that the advantages of herringbone face-gear drives include no axial force on the pinion, simplified bearing support, larger transmission ratios, larger helix angles, higher bearing capacities, less vibration and noise, high-speed applications, high-load applications, lower sensitivity to the sense of rotation, and being applicable to both clockwise and counterclockwise rotations. Finally, this paper summarizes the design rules for herringbone face-gear drives.
Keywords herringbone face-gear drives      geometric design      gear tooth contact      axial force on the pinion gear      contact ratio      transmission error     
Issue Date: 05 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Guangshuo
GU Yongpeng
LAN Xudong
ZHOU Ming
Cite this article:   
FENG Guangshuo,GU Yongpeng,LAN Xudong, et al. Geometric design and characteristic analysis of herringbone face gears[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 670-682.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.22.015     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I8/670
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 冯光烁. 重油直升机动力总成关键技术研究[D]. 北京:清华大学, 2016. FENG G S. Study on key technologies of heavy fuel helicopter powertrain[D]. Beijing:Tsinghua University, 2016. (in Chinese)
[2] FENG G S, XIE Z F, ZHOU M. Geometric design and analysis of face-gear drive with involute helical pinion[J]. Mechanism and Machine Theory, 2019, 134:169-196.
[3] LITVIN F L, WANG J C, BOSSLER R B JR. Application of face-gear drives in helicopter transmissions[J]. Journal of Mechanical Design, 1994, 116(3):672-676.
[4] LITVIN F L, FUENTES A. Gear geometry and applied theory[M]. 2nd ed. New York, USA:Cambridge University Press, 2004.
[5] LITVIN F L, FUENTES A, ZANZI C, et al. Design, generation, and stress analysis of two versions of geometry of face-gear drives[J]. Mechanism and Machine Theory, 2002, 37(10):1179-1211.
[6] LITVIN F L, GONZALEZ-PEREZ I, FUENTES A, et al. Design, generation and stress analysis of face-gear drive with helical pinion[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(36-38):3870-3901.
[7] ZHANG Y, WU Z. Offset face gear drives:Tooth geometry and contact analysis[J]. Journal of Mechanical Design, 1997, 119(1):114-119.
[8] LITVIN F L, EGELJA A, TAN J, et al. Computerized design, generation and simulation of meshing of orthogonal offset face-gear drive with a spur involute pinion with localized bearing contact[J]. Mechanism and Machine Theory, 1998, 33(1-2):87-102.
[9] 付学中, 方宗德, 李建华, 等. 偏置面齿轮的碟形砂轮磨齿及啮合性能[J]. 华南理工大学学报(自然科学版), 2016, 44(7):77-82. FU X Z, FANG Z D, LI J H, et al. Grinding and meshing performance of offset face gear modified with disk wheel[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(7):77-82. (in Chinese)
[10] LITVIN F L, NAVA A, FAN Q, et al. New geometry of face worm gear drives with conical and cylindrical worms:Generation, simulation of meshing, and stress analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(27-28):3035-3054.
[11] NAPAU M, NAPAU I D, NAPAU I, et al. Computerized modeling and simulation of idle and loaded multi-tooth contact analysis in worm-face gear drives[C]//Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Las Vegas, USA, 2007:1103-1112.
[12] BOANTĂ C I, BOLOĂ V. The mathematical model of generating kinematic for the worm face gear with modified geometry[J]. Procedia Technology, 2014, 12:442-447.
[13] BODZÁS S, BODZÁS I. Mathematical description and modeling of a tooth surface of spiroid face gear having arched profile in axial section[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5-8):1431-1442.
[14] 户立杰, 李清, 彭学玉, 等. 偏置蜗杆面齿轮传动的参数化建模与接触分析[J]. 机械设计与研究, 2016, 32(1):32-36.HU L J, LI Q, PENG X Y, et al. The parametric modelling and contact analysis of the offset face gear with worm[J]. Machine Design and Research, 2016, 32(1):32-36. (in Chinese)
[15] 李永祥, 陈国定, 袁夫彩, 等. 变位面齿轮齿宽特性的研究[J]. 机械传动, 2009, 33(4):16-18. LI Y X, CHEN G D, YUAN F C, et al. The research on the character of tooth-width on face-gear addendum modification[J]. Journal of Mechanical Transmission, 2009, 33(4):16-18. (in Chinese)
[16] 周镇宇, 唐进元, 丁撼. 变位非正交面齿轮副小轮齿向修形轮齿接触分析[J]. 中国机械工程, 2016, 27(15):2003-2009.ZHOU Z Y, TANG J Y, DING H. Tooth contact analysis of profile-shifted non-orthogonal face gear drive with longitudinal modified pinion[J]. China Mechanical Engineering, 2016, 27(15):2003-2009. (in Chinese)
[17] 付学中, 方宗德, 侯祥颖, 等. 变位面齿轮副承载特性分析及变位系数优化[J]. 华中科技大学学报(自然科学版), 2017, 45(6):57-62. FU X Z, FANG Z D, HOU X Y, et al. Bearing characteristics and optimal modification coefficient of modified face gear pair[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2017, 45(6):57-62. (in Chinese)
[18] LITVIN F L, FUENTES A, HOWKINS M. Design, generation and TCA of new type of asymmetric face-gear drive with modified geometry[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(43-44):5837-5865.
[19] CUI Y M, FANG Z D, SU J Z, et al. Precise modeling of arc tooth face-gear with transition curve[J]. Chinese Journal of Aeronautics, 2013, 26(5):1346-1351.
[20] HE C J, LIN C. Analysis of loaded characteristics of helical curve face gear[J]. Mechanism and Machine Theory, 2017, 115:267-282.
[21] LIU D W, REN T Z, JIN X. Geometrical model and tooth analysis of undulating face gear[J]. Mechanism and Machine Theory, 2015, 86:140-155.
[22] 冯光烁, 周明, 兰旭东, 等. 人字形面齿轮及具有其的人字形面齿轮副:CN201510486201[P]. 2015-11-18. FENG G S, ZHOU M, LAN X D, et al. Inverted-V-shaped face gear and inverted-V-shaped gear pair comprising same:CN201510486201[P]. 2015-11-18. (in Chinese)
[23] 冯光烁, 周明, 兰旭东, 等. 面齿轮副的设计方法:CN201510486215[P]. 2015-12-09. FENG G S, ZHOU M, LAN X D, et al. Design method of face gear pair:CN201510486215[P]. 2015-12-09. (in Chinese)
[24] 陈志新. 共轭曲面原理基础[M]. 北京:科学出版社, 1985. CHEN Z X. Basic principle of conjugate surface[M]. Beijing:Science Press, 1985. (in Chinese)
[1] FENG Guangshuo, HUANG Xudong, LAN Xudong, ZHOU Ming. Torsional vibration modeling and analysis of a face-gear pair[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 888-898.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd