Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (11) : 895-901     DOI: 10.16511/j.cnki.qhdxxb.2019.22.026
CIVIL ENGINEERING |
Geometric design of an outdoor three-dimensional kinematic verification field for a position and orientation system
LI Qi1, BAI Zhengdong1, LI Qiong2, WU Fei2, CHEN Bobo1, XIN Haohao1, CHENG Yuhang1
1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. The 2nd Engineering Company Limited, China Railway 16 th Bureau Group, Tianjin 300162, China
Download: PDF(9074 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A three-dimensional test field was developed to verify the accuracy of a multi-sensor integrated position and orientation system (POS) with an improved kinematic testing method. This paper describes the POS kinematic testing method conditions, the geometric model for the outdoor three-dimensional kinematic verification field, and the limitations of the field design. Static and kinematic calibration tests of a multi-sensor integrated POS in the field are consistent with the field design parameters. Statistical analyses of the distance, horizontal and vertical errors using the classical variance, Allan variance, and other methods show that the short-term precision of the multi-sensor integrated POS is acceptable. This verification method can not only verify the position and orientation precision of the POS, but can also be used to develop specifications to improve POS designs.
Keywords position and orientation system (POS)      global navigation satellite system (GNSS)/inertial navigation system (INS)      verification field      Allan variance     
Issue Date: 19 November 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Qi
BAI Zhengdong
LI Qiong
WU Fei
CHEN Bobo
XIN Haohao
CHENG Yuhang
Cite this article:   
LI Qi,BAI Zhengdong,LI Qiong, et al. Geometric design of an outdoor three-dimensional kinematic verification field for a position and orientation system[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(11): 895-901.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.22.026     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I11/895
  
  
  
  
  
  
  
  
  
  
  
  
[1] 国家测绘局. 全球定位系统(GPS)测量型接收机检定规程:CH 8016-1995[S]. 北京:中国标准出版社, 1995. State Bureau of Surveying and Mapping of the People's Republic of China. Specification for check off and test of GPS receiver of surveying model:CH 8016-1995[S]. Beijing:Standards Press of China, 1995. (in Chinese)
[2] 国家质量技术监督局. 全球导航卫星系统(GNSS)第1部分:全球定位系统(GPS)接收设备性能标准、测试方法和要求的测试结果:GB/T 18214.1-2000[S]. 北京:中国标准出版社, 2000. State Bureau of Quality Technical Supervision of the People's Republic of China. Global navigation satellite systems (GNSS), part 1:Global positioning system(GPS) receiver equipment:Performance standards, methods of testing and required test results:GB/T 18214.1-2000[S]. Beijing:Standards Press of China, 2000. (in Chinese)
[3] 中华人民共和国工业和信息化部. GNSS测量型接收设备通用规范:SJ/T 11421-2010[S]. 北京:中国标准出版社, 2011. Ministry of Industry and Information Technology of the People's Republic of China. General specification for geodetic GNSS receiver:SJ/T 11421-2010[S]. Beijing:Standards Press of China, 2011. (in Chinese)
[4] 中华人民共和国工业和信息化部. GNSS测姿型接收设备通用规范:SJ/T 11424-2010[S]. 北京:中国标准出版社, 2011. Ministry of Industry and Information Technology of the People's Republic of China. General specification for GNSS attitude determination instrument:SJ/T 11424-2010[S]. Beijing:Standards Press of China, 2011. (in Chinese)
[5] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 移动测量系统惯性测量单元:GB/T 28587-2012[S]. 北京:中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Inertial measurement unit in the mobile mapping system:GB/T 28587-2012[S]. Beijing:Standards Press of China, 2012. (in Chinese)
[6] International Organization for Standardization (ISO). Optics and optical instruments:Field procedures for testing geodetic and surveying instruments, part 8:GNSS field measurement systems in real-time kinematic (RTK):ISO 17123-8:2015[S]. Geneva, Switzerland:ISO, 2015.
[7] 中国测绘地理信息学会. 2016-2017测绘科学技术学科发展报告[M]. 北京:中国科学技术出版社, 2018. China Association for Science and Technology. Report on advances in science and technology of surveying and mapping during 2016-2017[M]. Beijing:China Science and Technology Press, 2018. (in Chinese)
[8] 郭明, 王国利, 陈才, 等. 移动测量系统设计原理与实现方法[M]. 北京:科学出版社, 2018. GUO M, WANG G L, CHEN C, et al. Design principle and realization method of mobile surveying system[M]. Beijing:Science Press, 2018. (in Chinese)
[9] ZHANG Q, NIU X, CHEN Q, et al. Using Allan variance to evaluate the relative accuracy on different time scales of GNSS/INS systems[J]. Measurement Science and Technology, 2013, 24(8):085006.
[10] 焦海松, 张德欣, 江良剑, 等.一种用于GNSS接收机动态精度检定的系统设计[J]. 测绘科学技术学报, 2018, 35(2):117-120, 125. JIAO H S, ZHANG D X, JIANG L J, et al. A system design for kinematic accuracy verification of GNSS receiver[J]. Journal of Geomatics Science and Technology, 2018, 35(2):117-120, 125. (in Chinese)
[11] EL-SHEIMY N, HOU H, NIU X. Analysis and modeling of inertial sensors using Allan variance[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(1):140-149.
[12] 翟婉明. 车辆-轨道耦合动力学[M]. 北京:科学出版社, 2015. ZHAI W M. Vehicle-track coupling dynamics[M]. Beijing:Science Press, 2015. (in Chinese)
[13] 翟婉明, 赵春发, 夏禾, 等. 高速铁路基础结构动态性能演变及服役安全的基础科学问题[J]. 中国科学:技术科学, 2014, 44:645-660. ZHAI W M, ZHAO C F, XIA H, et al. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety[J]. SCIENTIA SINICA Technologica, 2014, 44:645-660. (in Chinese)
[14] 蔡成标, 翟婉明, 王其昌. 轨道几何不平顺安全限值的研究[J]. 铁道学报, 1995, 17(4):82-87. CAI C B, ZHAI W M, WANG Q C. Study on allowable safety criterion of track geometric irregulatrities[J]. Journal of the China Railway Society, 1995, 17(4):82-87. (in Chinese)
[15] 田国英, 高建敏, 翟婉明. 利用高速铁路轨道不平顺谱估算不平顺限值的方法[J]. 铁道学报, 2015, 37(1):83-90. TIAN G Y, GAO J M, ZHAI W M. A method for estimation of track irregularity limits using track irregularity power spectrum density of high-speed railway[J]. Journal of the China Railway Society, 2015, 37(1):83-90. (in Chinese)
[16] 中华人民共和国铁道部. 高速铁路工程测量规范:TB 10601-2009[S]. 北京:中国标准出版社, 2009. Ministry of Railways of the People's Republic of China. Code for engineering survey of high speed railway:TB 10601-2009[S]. Beijing:Standards Press of China, 2009. (in Chinese)
[17] 田国英, 高建敏, 翟婉明. 高速铁路轨道不平顺管理标准的对比分析[J]. 铁道学报, 2015, 37(3):64-71. TIAN G Y, GAO J M, ZHAI W M. Comparative analysis of track irregularity management standards for high-speed railways[J]. Journal of the China Railway Society, 2015, 37(3):64-71. (in Chinese)
[18] 黎奇, 白征东, 赵思浩, 等. Allan方差方法分析环形激光陀螺仪噪声的性能评估[J/OL]. (2019-03-13)[2019-03-28]. https://doi.org/10.16511/j.cnki.qhdxxb.2019.22.009. LI Q, BAI Z D, ZHAO S H, et al. Performance evaluation of the Allan variance method for ring laser gyroscope noise analyses[J/OL]. (2019-03-13)[2019-03-28]. https://doi.org/10.16511/j.cnki.qhdxxb.2019.22.009. (in Chinese)
[1] LI Qi, BAI Zhengdong, ZHAO Sihao, DAI Dongkai, XING Haifeng. Performance evaluation of the Allan variance method for ring laser gyroscope noise analyses[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(11): 887-894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd