Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (12) : 999-1005     DOI: 10.16511/j.cnki.qhdxxb.2019.22.036
HYDRAULIC ENGINEERING |
Diagnostic function analysis of the logarithmic law in open channel turbulence
ZHONG Qiang1,2, ZHENG Fengchuan1, YANG Yuchen1, DENG Zhaoyu1
1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China;
2. Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083, China
Download: PDF(4231 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The logarithmic law is generally accepted to be a universal law for turbulent open channel flows independent of the Reynolds number and Froude number. However, the thickness of the logarithmic area and the value of the Karman constant are still being debated due to the inseparability of the Karman constant and the friction velocity and the gradual changes in the relationship between the mean velocity distribution and the logarithmic law. A diagnostic function is developed in this study to separate the Karman constant and the friction velocity in particle image velocimetry (PIV) data for open channel flows. The diagnostic function for the experimental data shows that the mean velocity distributions have no strict logarithmic region. According to the results of experiments and direct numerical simulation (DNS), the logarithmic region appears only when the Reynolds number is large enough and is within 76 < y+ < 0.5 Reτ. The Karman constant is then between 0.334 and 0.415.
Keywords open channel      turbulent flow      Reynolds number      logarithmic law      diagnostic function     
Issue Date: 19 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHONG Qiang
ZHENG Fengchuan
YANG Yuchen
DENG Zhaoyu
Cite this article:   
ZHONG Qiang,ZHENG Fengchuan,YANG Yuchen, et al. Diagnostic function analysis of the logarithmic law in open channel turbulence[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(12): 999-1005.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.22.036     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I12/999
  
  
  
  
  
  
  
  
  
  
[1] POPE S B. Turbulent flows[M]. Cambridge, UK:Cambridge University Press, 2000.
[2] 钟强, 王兴奎, 苗蔚, 等. 高分辨率粒子示踪测速技术在光滑明渠紊流黏性底层测量中的应用[J]. 水利学报, 2014, 45(5):513-520. ZHONG Q, WANG X K, MIAO W, et al. High resolution PTV system and its application in the measurement in viscous sub layer in smooth open channel flow[J]. Journal of Hydraulic Engineering, 2014, 45(5):513-520. (in Chinese)
[3] NEZU I, RODI W. Open-channel flow measurements with a laser Doppler anemometer[J]. Journal of Hydraulic Engineering, 1986, 112(5):335-355.
[4] CARDOSO A H, GRAF W H, GUST G. Uniform flow in a smooth open channel[J]. Journal of Hydraulic Research, 1989, 27(5):603-616.
[5] NEZU I. Open-channel flow turbulence and its research prospect in the 21st century[J]. Journal of Hydraulic Engineering, 2005, 131(4):229-246.
[6] 刘春晶, 李丹勋, 王兴奎. 明渠均匀流的摩阻流速及流速分布[J]. 水利学报, 2005, 36(8):950-955. LIU C J, LI D X, WANG X K. Experimental study on friction velocity and velocity profile of open channel flow[J]. Journal of Hydraulic Engineering, 2005, 36(8):950-955. (in Chinese)
[7] CHOW V T. Open-channel hydraulics[M]. New York, USA:McGraw-Hill, 1959:182-192.
[8] 王殿常, 王兴奎, 李丹勋. 明渠时均流速分布公式对比及影响因素分析[J]. 泥沙研究, 1998(3):86-90. WANG D C, WANG X K, LI D X. Comparison of velocity distribution formulas and analysis of influencing factors in open channel flow[J]. Journal of Sediment Research, 1998(3):86-90. (in Chinese)
[9] ROUSSINOVA V, BISWAS N, BALACHANDAR R. Revisiting turbulence in smooth uniform open channel flow[J]. Journal of Hydraulic Research, 2008, 46(S1):36-48.
[10] ZHONG Q, CHEN Q G, WANG H, et al. Statistical analysis of turbulent super-streamwise vortices based on observations of streaky structures near the free surface in the smooth open channel flow[J]. Water Resources Research, 2016, 52(5):3563-3578.
[11] 钟强. 明渠紊流不同尺度相干结构实验研究[D]. 北京:清华大学, 2014. ZHONG Q. Experimental study on diverse scale coherent structures in open channel flows[D]. Beijing:Tsinghua University, 2014. (in Chinese)
[12] ADRIAN R J, WESTERWEEL J. Particle image velocimetry[M]. Cambridge, UK:Cambridge University Press, 2011.
[13] ÖSTERLUND J M, JOHANSSON A V, NAGIB H M, et al. Wall shear stress measurements in high Reynolds number boundary layers from two facilities[C]//Proceedings of the 30th AIAA Fluid Dynamics Conference. Norfolk, USA:AIAA, 1999:99-3814.
[14] ÖSTERLUND J M, JOHANSSON A V, NAGIB H M, et al. A note on the overlap region in turbulent boundary layers[J]. Physics of Fluids, 2000, 12(1):1-4.
[15] WOSNIK M, CASTILLO L, GEORGE W K. A theory for turbulent pipe and channel flows[J]. Journal of Fluid Mechanics, 2000, 421:115-145.
[16] ZANOUN E S, DURST F, NAGIB H. Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows[J]. Physics of Fluids, 2003, 15(10):3079-3089.
[17] SMITS A J, MCKEON B J, MARUSIC I. High-Reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43:353-375.
[18] LOZANO-DURÁN A, JIMÉNEZ J. Effect of the computational domain on direct simulations of turbulent channels up to Reτ=4200[J]. Physics of Fluids, 2014, 26(1):011702.
[19] KOMORI S, NAGAOSA R, MURAKAMI Y, et al. Direct numerical simulation of three-dimensional open-channel flow with zero-shear gas-liquid interface[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(1):115-125.
[20] ROUSSINOVA V, SHINNEEB A M, BALACHANDAR R. Investigation of fluid structures in a smooth open-channel flow using proper orthogonal decomposition[J]. Journal of Hydraulic Engineering, 2010, 136(3):143-154.
[21] ZHONG Q, LI D X, CHEN Q G, et al. Coherent structures and their interactions in smooth open channel flows[J]. Environmental Fluid Mechanics, 2015, 15(3):653-672.
[1] LIU Jiahong, ZHOU Jinjun, WANG Hao, LV Hongxing. Numerical simulation of the hydraulic characteristics of hilly irrigation systems[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 387-393.
[2] LI Xiao, YANG Xiaoyong, ZHANG Youjie. HTR-10GT inventory control characteristics and mechanism[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(9): 1010-1016,1022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd