Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2020, Vol. 60 Issue (2) : 139-146     DOI: 10.16511/j.cnki.qhdxxb.2019.22.042
SPECIAL SECTION: ELECTRIC VEHICLE |
Electrochemical impedance equivalent circuit model for zinc-air fuel cells
CHEN Dongfang, PEI Pucheng, SONG Xin, REN Peng
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Download: PDF(4056 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The physicochemical processes in zinc-air fuel cells can be represented by an equivalent circuit model. However, the impedance distribution of anode and cathode is not taken accounted in the existing models. A whole cell model including the anode and cathode impedances is presented and a simplified version is developed that neglects the effect of the anode. The influences of the cell structure, performance degradation, storage condition, conductive agent in the zinc anode, and structural changes in the air cathode on the impedance are investigated with the model fitting experimental data with chi-square test results all less than 0.01. The impedances predicted by the model are then used to analyze the impedance change mechanism. The results show that this model can be used to study metal-air batteries.
Keywords zinc-air fuel cell      electrochemical impedance      equivalent circuit model      air cathode      mechanism     
Issue Date: 15 January 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Dongfang
PEI Pucheng
SONG Xin
REN Peng
Cite this article:   
CHEN Dongfang,PEI Pucheng,SONG Xin, et al. Electrochemical impedance equivalent circuit model for zinc-air fuel cells[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(2): 139-146.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.22.042     OR     http://jst.tsinghuajournals.com/EN/Y2020/V60/I2/139
  
  
  
  
  
  
  
[1] LEE J S, TAI KIM S, CAO R G, et al. Metal-air batteries with high energy density:Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1(1):34-50.
[2] RAHMAN M A, WANG X J, WEN C E. High energy density metal-air batteries:A review[J]. Journal of the Electrochemical Society, 2013, 160(10):A1759-A1771.
[3] PEI P C, WANG K L, MA Z. Technologies for extending zinc-air battery's cyclelife:A review[J]. Applied Energy, 2014, 128:315-324.
[4] PEI P C, MA Z, WANG K L, et al. High performance zinc air fuel cell stack[J]. Journal of Power Sources, 2014, 249:13-20.
[5] SMEDLEY S I, ZHANG X G. A regenerative zinc-air fuel cell[J]. Journal of Power Sources, 2007, 165(2):897-904.
[6] 王希忠, 姜智红, 刘伯文, 等. 车用锌空燃料电池系统开发研究[J]. 清华大学学报(自然科学版), 2013, 53(8):1150-1154. WANG X Z, JIANG Z H, LIU B W, et al. Developing a zinc-air fuel cell system for vehicle applications[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(8):1150-1154. (in Chinese)
[7] SAPKOTA P, KIM H. Zinc-air fuel cell, a potential candidate for alternative energy[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(4):445-450.
[8] YANG D, TAN H T, RUI X H, et al. Electrode materials for rechargeable zinc-ion and zinc-air batteries:Current status and future perspectives[J]. Electrochemical Energy Reviews, 2019. DOI:10.1007/s41918-019-00035-5.
[9] WANG Y J, FANG B Z, ZHANG D, et al. A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries[J]. Electrochemical Energy Reviews, 2018, 1(1):1-34.
[10] LI Y G, DAI H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15):5257-5275.
[11] MA Z, PEI P C, WANG K L, et al. Degradation characteristics of air cathode in zinc air fuel cells[J]. Journal of Power Sources, 2015, 274:56-64.
[12] PICHLER B, MAYER K, HACKER V. Long-term operation of perovskite-catalyzed bifunctional air electrodes in rechargeable zinc-air flow batteries[J]. Batteries & Supercaps, 2019, 2(4):387-395.
[13] PIVAC I, ŠIMIĆ B, BARBIR F. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2017, 365:240-248.
[14] REN P, PEI P C, LI Y H, et al. Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance[J]. Applied Energy, 2019, 239:785-792.
[15] DOPP R B, CARPENTER D, MCGRATH K. Gas diffusion cathode using nanometer sized particles of transition metals for catalysis:US20110190116A1[P]. 2011-08-04.
[16] MAINAR A R, COLMENARES L C, BLÁZQUEZ J A, et al. A brief overview of secondary zinc anode development:The key of improving zinc-based energy storage systems[J]. International Journal of Energy Research, 2018, 42(3):903-918.
[17] ZHANG S S, YUAN X Z, HIN J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2):588-600.
[18] CIFRAIN M, KORDESCH K V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes[J]. Journal of Power Sources, 2004, 127(1-2):234-242.
[19] HOPKINS B J, SHAO-HORN Y, HART D P. Suppressing corrosion in primary aluminum-air batteries via oil displacement[J]. Science, 2018, 362(6415):658-661.
[20] 苏方远, 唐睿, 贺艳兵, 等. 用于锂离子电池的石墨烯导电剂:缘起、现状及展望[J]. 科学通报, 2017, 62(32):3743-3756. SU F Y, TANG R, HE Y B, et al. Graphene conductive additives for lithium ion batteries:Origin, progress and prospect[J]. Chinese Science Bulletin, 2017, 62(32):3743-3756. (in Chinese)
[21] MASRI M N, MOHAMAD A A. Effect of adding carbon black to a porous zinc anode in a zinc-air battery[J]. Journal of the Electrochemical Society, 2013, 160(4):A715-A721.
[22] YI J, LIANG P C, LIU X Y, et al. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries[J]. Energy & Environmental Science, 2018, 11(11):3075-3095.
[23] EOM S W, LEE C W, YUN M S, et al. The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes[J]. Electrochimica Acta, 2006, 52(4):1592-1595.
[1] ZHANG Xueqin, LIU Gang, WANG Zhineng, LUO Fei, WU Jianhua. Microscopic diffusion prediction based on multifeature fusion and deep learning[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 688-699.
[2] ZHAO Xingwang, HOU Zhedong, YAO Kaixuan, LIANG Jiye. Two-stage fusion multiview graph clustering based on the attention mechanism[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 1-12.
[3] LUO Rongkang, YU Zhihao, WU Peibao, HOU Zhichao. Dynamic analysis of flexible coupling for an electric wheel with a suspended drive motor[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 25-32.
[4] ZHANG Mingfang, LI Guilin, WU Chuna, WANG Li, TONG Lianghao. Estimation algorithm of driver's gaze zone based on lightweight spatial feature encoding network[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 44-54.
[5] ZHANG Yang, JIANG Minghu. Authorship identification method based on the embedding of the syntax tree node[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1390-1398.
[6] HUANG Ben, KANG Fei, TANG Yu. A real-time detection method for concrete dam cracks based on an object detection algorithm[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1078-1086.
[7] ZHOU Xun, LI Yonglong, ZHOU Yingyue, WANG Haoran, LI Jiayang, ZHAO Jiaqi. Dam surface crack detection method based on improved DeepLabV3+ network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1153-1163.
[8] HUANG Yuecheng, ZHANG Zhihuai, CAO Sihan, LI Jianhua, FANG Dongping. Safety culture management mechanism design in the construction industry based on semantic analysis[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(2): 179-190.
[9] ZENG Guohua, TANG Zhili, XU Qianjun. Investment decision-making and cost recovery mechanisms of utility tunnels based on comprehensive benefit quantification[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(2): 210-222.
[10] HU Senchang, WANG Yunhong, WU Zekun, TANG Wenzhe, WANG Zhongjing, LI Shaoyi, MENG Xiangxin. Integrated water management in the Xiong'an New Area from the perspective of stakeholder cooperation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(2): 283-292.
[11] JIANG Hailong, WANG Xiaoguang, WANG Jiajun, LIU Ting, LIN Qi. Kinematic characteristics and stability analysis of four-cable suspension system for full-model flutter wind tunnel test[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1856-1867.
[12] LI Zhengqing, HOU Senhao, WEI Jinhao, TANG Xiaoqiang. Vision-based auto-calibration method for planar cable-driven parallel robot for warehouse and logistics tasks[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1508-1515.
[13] SONG Yubo, ZHU Jingkai, ZHAO Lingqi, HU Aiqun. Centralized federated learning model based on model accuracy[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 832-841.
[14] YANG Hongyu, ZHANG Zixin, ZHANG Liang. Network security situation assessments with parallel feature extraction and an improved BiGRU[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 842-848.
[15] ZHAO Juying, XU Yiren, ZHU Tianyi, QI Zhihao, LI Yongjian. Numerical and experimental research on an adaptive labyrinth seal[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 463-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd