Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2020, Vol. 60 Issue (5) : 365-370     DOI: 10.16511/j.cnki.qhdxxb.2019.22.050
SPECIAL SECTION:VULNERABILITY ANALYSIS AND RISK ASSESSMENT |
Two-stage multi-classification algorithm for Internet of Things equipment identification
SONG Yubo1,2, QI Xinyu1,2, HUANG Qiang1,2, HU Aiqun1,2, YANG Junjie1,2
1. Jiangsu Key Laboratory of Computer Networking Technology, School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China;
2. Purple Mountain Laboratories, Nanjing 211189, China
Download: PDF(1177 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The Internet of Things will have a large number of devices interconnected through the network with effective network access control needed to avoid damage from malicious devices on the system. At present, the most effective method is to extract network traffic characteristics as the device fingerprint for device identification since this method requires relatively few network resources. However, existing device identification algorithms are not very accurate, especially for similar devices since classification overlap is unavoidable. This paper presents a two-stage multi-classification algorithm that identifies the equipment according to its network traffic characteristics. When classification overlap occurs, the maximum similarity comparison algorithm is used for secondary classification. Tests show that the average recognition accuracy of this algorithm is 93.2%.
Keywords device identification      multi-classification technology      maximum similarity      machine learning     
Issue Date: 26 April 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Yubo
QI Xinyu
HUANG Qiang
HU Aiqun
YANG Junjie
Cite this article:   
SONG Yubo,QI Xinyu,HUANG Qiang, et al. Two-stage multi-classification algorithm for Internet of Things equipment identification[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 365-370.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.22.050     OR     http://jst.tsinghuajournals.com/EN/Y2020/V60/I5/365
  
  
  
  
  
  
  
[1] BERTINO E, ISLAM N. Botnets and Internet of Things security[J]. Computer, 2017, 50(2):76-79.
[2] MINOLI D, SOHRABY K, OCCHIOGROSSO B. IoT considerations, requirements, and architectures for smart buildings:Energy optimization and next-generation building management systems[J]. IEEE Internet of Things Journal, 2017, 4(1):269-283.
[3] Gartner. Gartner says worldwide IoT security spending will reach $1.5 billion in 2018[N/OL].[2019-04-15]. https://www.gartner.com/en/newsroom/press-releases/2018-03-21-gartner-says-worldwide-iot-security-spending-will-reach-1-point-5-billion-in-2018.
[4] COPPI R, GIL M A, KIERS H A L. The fuzzy approach to statistical analysis[J]. Computational Statistics & Data Analysis, 2006, 51(1):1-14.
[5] JANA S, KASERA S K. On fast and accurate detection of unauthorized wireless access points using clock skews[J]. IEEE Transactions on Mobile Computing, 2010, 9(3):449-462.
[6] GAO K, CORBETT C, BEYAH R. A passive approach to wireless device fingerprinting[C]//2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN). Chicago, USA, 2010:383-392.
[7] KOHNO T, BROIDO A, CLAFFY K C. Remote physical device fingerprinting[J]. IEEE Transactions on Dependable and Secure Computing, 2005, 2(2):93-108.
[8] CORBETT C L, BEYAH R A, COPELAND J A. Passive classification of wireless NICs during active scanning[J]. International Journal of Information Security, 2008, 7(5):335-348.
[9] YANG K, LI Q, SUN L M. Towards automatic fingerprinting of IoT devices in the cyberspace[J]. Computer Networks, 2019, 148:318-327.
[10] AULD T, MOORE A W, GULL S F. Bayesian neural networks for Internet traffic classification[J]. IEEE Transactions on Neural Networks, 2007, 18(1):223-239.
[11] CELIK Z B, MCDANIEL P, BOWEN T. Malware modeling and experimentation through parameterized behavior[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2018, 15(1):31-48.
[12] LIU Z, WANG R Y, JAPKOWICZ N, et al. Mobile app traffic flow feature extraction and selection for improving classification robustness[J]. Journal of Network and Computer Applications, 2019, 125:190-208.
[13] MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[C]//Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. Banff, Canada, 2005:50-60.
[14] SHAFIQ M, YU X Z, BASHIR A K, et al. A machine learning approach for feature selection traffic classification using security analysis[J]. The Journal of Supercomputing, 2018, 74(10):4867-4892.
[15] FORMBY D, SRINIVASAN P, LEONARD A, et al. Who's in control of your control system? Device fingerprinting for cyber-physical systems[C]//Network and Distributed System Security Symposium. San Diego, USA, 2016:1-15.
[16] RADHAKRISHNAN S V, ULUAGAC A S, BEYAH R. GTID:A technique for physical device and device type fingerprinting[J]. IEEE Transactions on Dependable and Secure Computing, 2015, 12(5):519-532.
[17] MIETTINEN M, MARCHAL S, HAFEEZ I, et al. IoT Sentinel:Automated device-type identification for security enforcement in IoT[C]//Proceedings of the 37th International Conference on Distributed Computing Systems (ICDCS). Atlanta, USA, 2017:2177-2184.
[18] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2):415-425.
[1] WU Hao, NIU Fenglei. Machine learning model of radiation heat transfer in the high-temperature nuclear pebble bed[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1213-1218.
[2] DAI Xin, HUANG Hong, JI Xinyu, WANG Wei. Spatiotemporal rapid prediction model of urban rainstorm waterlogging based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 865-873.
[3] REN Jianqiang, CUI Yapeng, NI Shunjiang. Prediction method of the pandemic trend of COVID-19 based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 1003-1011.
[4] AN Jian, CHEN Yuxuan, SU Xingyu, ZHOU Hua, REN Zhuyin. Applications and prospects of machine learning in turbulent combustion and engines[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 462-472.
[5] ZHAO Qiming, BI Kexin, QIU Tong. Comparison and integration of machine learning based ethylene cracking process models[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1450-1457.
[6] CAO Laicheng, LI Yuntao, WU Rong, GUO Xian, FENG Tao. Multi-key privacy protection decision tree evaluation scheme[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 862-870.
[7] WANG Haojie, MA Zixuan, ZHENG Liyan, WANG Yuanwei, WANG Fei, ZHAI Jidong. Efficient memory allocator for the New Generation Sunway supercomputer[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 943-951.
[8] LU Sicong, LI Chunwen. Human-machine conversation system for chatting based on scene and topic[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 952-958.
[9] LI Wei, LI Chenglong, YANG Jiahai. As-Stream: An intelligent operator parallelization strategy for fluctuating data streams[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1851-1863.
[10] LIU Qiangmo, HE Xu, ZHOU Baishun, WU Haolin, ZHANG Chi, QIN Yu, SHEN Xiaomei, GAO Xiaorong. Simple and high performance classification model for autism based on machine learning and pupillary response[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1730-1738.
[11] MA Xiaoyue, MENG Xiao. Image position and layout effects of multi-image tweets from the perspective of user engagement[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 77-87.
[12] TANG Zhili, WANG Xue, XU Qianjun. Rockburst prediction based on oversampling and objective weighting method[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 543-555.
[13] WANG Zhiguo, ZHANG Yujin. Anomaly detection in surveillance videos: A survey[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 518-529.
[14] LU Xiaofeng, JIANG Fangshuo, ZHOU Xiao, CUI Baojiang, YI Shengwei, SHA Jing. API based sequence and statistical features in a combined malware detection architecture[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 500-508.
[15] ZOU Quanchen, ZHANG Tao, WU Runpu, MA Jinxin, LI Meicong, CHEN Chen, HOU Changyu. From automation to intelligence: Survey of research on vulnerability discovery techniques[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(12): 1079-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd