Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (6) : 445-452     DOI: 10.16511/j.cnki.qhdxxb.2019.26.004
MECHANICAL ENGINEERING |
Detection algorithms and optimization of image processing for visual sensors using combined laser structured light
SUN Bowen, ZHU Zhiming, GUO Jichang, ZHANG Tianyi
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(2285 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Visual sensors based on laser structured light are widely used in the welding field for detection of welding grooves and tracking of weld seams. This paper describes a visual sensor based on combined laser structured light where the light paths within the visual sensor are designed to eliminate the need to calibrate the external sensor parameters for different positions and postures to provide on-line detection of welding groove parameters using only the internal sensor parameters (which require calibration) and the feature point coordinates of the welding groove image. Thus, this method is much more adaptable than previous methods. The image processing is optimized by improving and combining various image processing algorithms. A dynamic region of interest region extraction algorithm is used to quickly find the region that includes the laser lines and feature points to significantly improve the subsequent image processing speed. Then, a top hat transformation and self-adaptive binarization are used to homogenize the gray values of the laser lines that differentiates the laser lines from the background. After that, an edge recognition algorithm based on the Laplacian of Gaussian (LOG) operator is used to extract the single pixel edges of the laser lines which are used to then identify the discrete points of the laser center lines that are fit to linear equations by the least squares method. Finally, these linear equations are used to accurately calculate the image coordinates of the feature points of the welding groove. All these image processing algorithms were implemented in Visual Studio for tests to detect V-shaped welding grooves with various characteristic parameters. The detection errors are all within ±4%, which shows that the detection algorithms are reasonable and applicable for image processing of welding processes with visual sensors.
Keywords visual sensor      image processing      dynamic region of interest extraction      top hat transformation      adaptive binarization      edge recognition     
Issue Date: 01 June 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Bowen
ZHU Zhiming
GUO Jichang
ZHANG Tianyi
Cite this article:   
SUN Bowen,ZHU Zhiming,GUO Jichang, et al. Detection algorithms and optimization of image processing for visual sensors using combined laser structured light[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 445-452.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.26.004     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I6/445
  
  
  
  
  
  
  
  
  
  
  
  
[1] 罗璐, 林三宝, 伏喜斌, 等. 基于激光视觉的焊缝特征信息检测技术研究[J]. 焊接, 2008(7):33-37. LUO L, LIN S B, FU X B, et al. Inspection technology on joint feature information based on laser vision[J]. Welding & Joining, 2008(7):33-37. (in Chinese)
[2] LEE S K, NA S J. A study on automatic seam tracking in pulsed laser edge welding by using a vision sensor without an auxiliary light source[J]. Journal of Manufacturing Systems, 2002, 21(4):302-315.
[3] 于英飞, 郭吉昌, 朱志明. 焊接可视化技术的发展与研究现状[J]. 焊接, 2017(12):4-8. YU Y F, GUO J C, ZHU Z M. Development and research status of welding visualization technology[J]. Welding & Joining, 2017(12):4-8. (in Chinese)
[4] 郭吉昌, 朱志明, 于英飞, 等. 焊接领域激光结构光视觉传感技术的研究及应用[J]. 中国激光, 2017, 44(12):7-16. GUO J C, ZHU Z M, YU Y F, et al. Research and application of visual sensing technology based on laser structured light in welding industry[J]. Chinese Journal of Laser, 2017, 44(12):7-16. (in Chinese)
[5] 章妍. 基于铝合金GTAW焊三光路视觉传感的熔池特征提取[D]. 上海:上海交通大学, 2014. ZHANG Y. Visual characters extraction of weld pool based on three path meseurement during aluminum alloy GTAW process[D]. Shanghai:Shanghai Jiao Tong University, 2014. (in Chinese)
[6] 刘志辉. 坡口及焊缝数字轮廓的激光光栅视觉测量[D]. 兰州:兰州理工大学, 2018. LIU Z H. Laser grating vision measurement of groove and weld digital contour[D]. Lanzhou:Lanzhou University of Technology, 2018. (in Chinese)
[7] 冈萨雷斯, 伍兹. 数字图像处理[M]. 阮秋琦, 阮宇智, 译. 北京:电子工业出版社. 2011. GONZALEZ R C, WOODS R E. Digital image processing[M]. RUAN Q Q, RUAN Y Z, trans. Beijing:Publishing House of Electronic Industry. 2011. (in Chinese)
[8] 刘子腾, 白瑞林, 王秀平. 基于激光视觉的角焊缝图像特征点提取[J]. 焊接学报, 2016, 37(2):89-93. LIU Z T, BAI R L, WANG X P. Image feature extraction of fillet weld based on laser vision[J]. Transactions of the China Welding Institution, 2016, 37(2):89-93. (in Chinese)
[9] 郭吉昌, 朱志明, 孙博文. 基于视觉的焊枪空间位姿实时检测技术[J]. 电焊机, 2018, 48(9):1-7. GUO J C, ZHU Z M, SUN B W. Real-time detection of position and attitude for welding torch based on vision[J]. Electric Welding Machine, 2018, 48(9):1-7. (in Chinese)
[10] GUO J C, ZHU Z M, SUN B W, et al. Principle of an innovative visual sensor based on combined laser structured lights and its experimental verification[J]. Optics & Laser Technology, 2019, 111:35-44.
[11] GUO J C, ZHU Z M, SUN B W, et al. A novel multifunctional visual sensor based on combined laser structured lights and its anti-jamming detection algorithms[J]. Welding in the World, 2018. DOI:10.1007/s40194-018-0654-y.
[12] 王璇. 焊接机器人焊缝信息视觉检测系统研究[D]. 天津:河北工业大学, 2013. WANG X. Research on visual detection sensor of welding robot[D]. Tianjin:Hebei University of Technology. (in Chinese)
[13] 赵军. 大构件焊缝磨抛机器人视觉测量技术的研究[D]. 长春:吉林大学, 2014. ZHAO J. Research on grinding/polishing robotic vision measurement technology for weld beads of large structural parts[D]. Changchun:Jilin University, 2014. (in Chinese)
[14] 沈同平, 王元茂, 方芳, 等. 基于灰度形态学的图像边缘特征提取算法研究[J]. 兰州文理学院学报(自然科学版), 2018, 32(2):58-61. SHEN T P, WANG Y M, FANG F, et al. Edge feature extraction algorithm based on gray morphology[J]. Journal of Lanzhou University of Arts and Science (Natural Sciences), 2018, 32(2):58-61. (in Chinese)
[15] 范九伦, 赵凤. 灰度图像的二维Otsu曲线阈值分割法[J]. 电子学报, 2007, 35(4):751-755. FAN J L, ZHAO F. Two-dimensional Otsu's curve thresholding segmentation method for gray-level images[J]. Acta Electronica Sinica, 2007, 35(4):751-755. (in Chinese)
[16] 郭佳. 基于光照不均匀图像的自适应二值化方法研究[D]. 武汉:武汉科技大学, 2013. GUO J. The research of binarization method based on non-uniform illumination images[D]. Wuhan:Wuhan University of Science and Technology, 2013. (in Chinese)
[17] 陈铖. 焊缝跟踪系统中基于C++的图像处理技术研究[D]. 成都:西南交通大学, 2017. CHEN C. Research on image processing technology based on C++ in weld tracking system[D]. Chengdu:Southwest Jiaotong University, 2017. (in Chinese)
[18] 刘习文, 王国荣, 石永华. 单条纹激光引导焊缝跟踪图像处理[J]. 焊接学报, 2006, 27(6):25-28, 32. LIU X W, WANG G R, SHI Y H. Image processing in welding seam tracking based on single stripe laser[J]. Transactions of the China Welding Institution, 2006, 27(6):25-28, 32. (in Chinese)
[19] 刘蕊. 数字图像中边缘检测算法的研究[D]. 镇江:江苏科技大学, 2009. LIU R. Digital image edge detection algorithm[D]. Zhenjiang:Jiangsu University of Science and Technology, 2009. (in Chinese)
[20] 张铮, 徐超, 任淑霞, 等. 数字图像处理与机器视觉[M]. 2版. 北京:人民邮电出版社, 2014. ZHANG Z, XU C, REN S X, et al. Digital image processing and machine vision[M]. 2nd ed. Beijing:Post & Telecom Press, 2014. (in Chinese)
[21] 管力明, 李磊, 林剑. 基于改进LOG算子的图像边缘检测方法[J]. 机电工程, 2010, 27(12):113-115. GUAN L M, LI L, LIN J. Image edge detection method based on improved LOG operator[J]. Journal of Mechanical & Electrical Engineering, 2010, 27(12):113-115. (in Chinese)
[22] 李莹莹, 张志毅, 袁林. 线结构光光条中心提取综述[J]. 激光与光电子学进展, 2013, 50(10):100002. LI YY, ZHANG Z Y, YUAN L. Survey on linear structured light stripe center extraction[J]. Laser & Optoelectronics Progress, 2013, 50(10):100002. (in Chinese)
[1] XIE Weiqiang, ZHANG Xiaoping, LIU Xiaoli, ZHOU Xiaoxiong, LIU Quansheng. Three-dimensional morphological characterization of sand particles based on a multiangle projection method[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 294-302.
[2] ZHANG Tianyi, ZHU Zhiming, ZHU Chuanhui, SUN Bowen. Visual sensing image processing and feature information extraction for arc welding[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 156-162.
[3] CHENG Shijia, ZHU Zhiming, FU Pingpo. Arc shape variations and characteristic temperatures of pulsed TIG welding arcs based on observed arc images[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 994-1001.
[4] ZHU Zhiming, CHENG Shijia, YU Yingfei, FU Pingpo. Automatic recognition and control of welding arc morphology as a function of the welding current and the tungsten electrode height[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(4): 285-291.
[5] ZHANG Simin, WANG Guolei, YU Qiankun, HUA Xiaotong, SONG Libin, CHEN Ken. Image processing analyses of the factors influencing the angle of an atomizer spray cone[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(2): 103-110.
[6] NIE Ding, AN Xuehui. Mini-slump flow measurement tool based on self phase image processing[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(12): 1249-1254.
[7] SHI Lin, XU Ran, XU Qianghui, XU Ying, ZHENG Licai. Advanced characterization of three-dimensional pores in coking sand by micro-CT[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1079-1084.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd