Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (9) : 744-749     DOI: 10.16511/j.cnki.qhdxxb.2019.26.017
ELECTRONIC ENGINEERING |
Miniaturized quantum key distribution transmitterbased on silicon PN junction emissions
HUANG Weishao, ZHANG Wei, HUANG Yidong
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(2365 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This paper describes a miniaturized quantum key distribution (QKD) transmitter for the BB84 protocol for short-range QKD applications between portable devices and hosts. The transmitter uses silicon PN junctions to generate photons and wire-grid polarizers for the polarization encoding. It also uses a convex lens and an aperture for collimation as well as to eliminate the photon spatial information. Simulations indicate that the transmitter can support a raw key generation rate of 3 kb/s and the polarization extinction ratio of the generated photons in each polarization state can reach 20 dB. The transmitter height can be as small as 5 mm, so the device can be integrated into portable devices such as mobile phones.
Keywords quantum key distribution      silicon PN junction emissions      wire-grid polarizer      spatial indistinguishability     
Issue Date: 27 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Weishao
ZHANG Wei
HUANG Yidong
Cite this article:   
HUANG Weishao,ZHANG Wei,HUANG Yidong. Miniaturized quantum key distribution transmitterbased on silicon PN junction emissions[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(9): 744-749.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.26.017     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I9/744
  
  
  
  
[1] BENNETT C H, BRASSARD G. Quantum cryptography:Public key distribution and coin tossing[C]//Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. New York, USA:IEEE, 1984:175-179.
[2] HWANG W Y. Quantum key distribution with high loss:Toward global secure communication[J]. Physical Review Letters, 2003, 91(5):057901.
[3] YIN H L, CHEN T Y, YU Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19):190501.
[4] SASAKI M, FUJIWARA M, ISHIZUKA H, et al. Field test of quantum key distribution in the Tokyo QKD network[J]. Optics Express, 2011, 19(11):10387-10409.
[5] 倪振华, 李亚麟, 姜艳. 量子保密通信原理及其在电网中的应用探究[J]. 电力信息与通信技术, 2017, 15(10):43-49.NI Z H, LI Y L, JIANG Y. Brief introductionof quantum secure communications andthe application survey in state grid[J]. Electric Power Information and Communication Technology, 2017, 15(10):43-49. (in Chinese)
[6] PEEV M, PACHER C, ALLÉAUME R, et al. The SECOQC quantum key distribution network in Vienna[J]. New Journal of Physics, 2009, 11(7):075001.
[7] LIAO SK, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670):43-47.
[8] DULIGALL J L, GODFREY M S, HARRISON K A, et al. Low cost and compact quantum key distribution[J]. New Journal of Physics, 2006, 8(10):249-256.
[9] VEST G, RAU M, FUCHS L, et al. Design and evaluation of a handheld quantum key distribution sender module[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3):6600607.
[10] CHUN H, CHOI I, FAULKNER G, et al. Handheld free space quantum key distribution with dynamic motion compensation[J]. Optics Express, 2017, 25(6):6784-6795.
[11] NEWMAN R. Visible light from a silicon PN junction[J]. Physical Review, 1955, 100(2):700-703.
[12] CHYNOWETH A G, MCKAY K G. Photon emission from avalanche breakdown in silicon[J]. Physical Review, 1956, 102(2):369-376.
[13] MICHAELIS W, PILKUHN M H. Radiative recombination in silicon PN junctions[J]. Physica Status Solidi B, 1969, 36(1):311-319.
[14] SNYMAN L W, PLESSIS M D, AHARONI H. Three terminal n+ ppn silicon CMOS light emitting devices (450 nm-750 nm) with three order increase in quantum efficiency[C]//Proceedings of the IEEE International Symposium on Industrial Electronics. Dubrovnik, Croatia:IEEE, 2005:1159-1166.
[15] PLESSIS D M, SNYMAN L W, AHARONI H. Low-voltage light emitting devices in silicon IC technology[C]//Proceedings of the IEEE International Symposium on Industrial Electronics, 2005. Dubrovnik, Croatia:IEEE, 2005:1145-1149.
[16] GOODMAN J W. Introduction to Fourier optics[M]. 3rd ed. Englewood:Roberts and Company Publishers, 2005.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd