SPECIAL SECTION: AEROSPACE AND ENGINEERING MECHANICS |
|
|
|
|
|
Atmospheric drag on satellites flying in lower low-earth orbit |
JIN Xuhong1,2, HUANG Fei1, CHENG Xiaoli1, WANG Qiang1, WANG Bing2 |
1. China Academy of Aerospace Aerodynamics, Beijing 100074, China; 2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract The test particle Monte Carlo method for flow in the free-molecular flow regime was integrated with various state-of-the-art atmospheric models in a general, three-dimensional code to calculate the atmospheric drag for user-defined spacecraft geometries of arbitrary complexity. Then, the code was applied to the geodetic GOCE satellite to evaluate the effects of flight altitude, orbit latitude and orbit longitude on the atmospheric drag to assess the sensitivity of the satellite drag on the atmospheric model. The results show that increasing the satellite height significantly reduces the atmospheric drag while increasing the drag coefficient. The results also illustrate the sensitivity of the satellite drag prediction to the atmospheric model. The orbit latitude and longitude affect the drag coefficients and the satellite drag indirectly by changing the atmospheric temperature and the molecular mass since the satellite drag is determined by the drag coefficient and the atmospheric density. Both the satellite drag and the drag coefficients are nonlinear functions of the orbit latitude and longitude. For the conditions considered here, two newer atmospheric models, JB2008 and DTM-2013, predict similar satellite drag forces with three older models, USSA-1976, Jacchia-1977 and NRLMSISE-00, yielding comparable but somewhat larger drag predictions.
|
Keywords
satellites in low-earth orbit
atmospheric density model
orbit latitude
orbit longitude
|
Issue Date: 03 March 2020
|
|
|
[1] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683):503-505. [2] REIGBER C, LUHR H, SCHWINTZER P. CHAMP mission status[J]. Advances in Space Research, 2002, 30(2):129-134. [3] RUMMEL R. YI W Y, STUMMER C. GOCE gravitational gradiometry[J]. Journal of Geodesy, 2011, 85(11):777-790. [4] CANUTO E. Drag-free and attitude control for the GOCE satellite[J]. Automatica, 2008, 44(7):1766-1780. [5] TEWARI A. Adaptive vectored thrust deorbiting of space debris[J]. Journal of Spacecraft and Rockets, 2013, 50(2):394-401. [6] MCLAUGHLIN C A, MANCE S, LICHTENBERG T. Drag coefficient estimation in orbit determination[J]. The Journal of the Astronautical Sciences, 2011, 58(3):513-530. [7] TITOV E, BURT J, JOSYULA E. Satellite drag uncertainties associated with atmospheric parameter variations at low earth orbits[J]. Journal of Spacecraft and Rockets, 2014, 51(3):884-892. [8] PARDINI C, ANSELMO L, MOE K, et al. Drag and energy accommodation coefficients during sunspot maximum[J]. Advances in Space Research, 2010, 45(5):638-650. [9] PRIETO D M, GRAZIANO B P, ROBERTS P C E. Spacecraft drag modelling[J]. Progress in Aerospace Sciences, 2014, 64:56-65. [10] FREDO R M, KAPLAN M H. Procedure for obtaining aerodynamic properties of spacecraft[J]. Journal of Spacecraft and Rockets, 1981, 18(4):367-373. [11] FULLER J D, TOLSON R H. Improved method for estimation of spacecraft free-molecular aerodynamic properties[J]. Journal of Spacecraft and Rockets, 2009, 46(5):938-948. [12] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. New York:Oxford University Press, 1994. [13] LEE J W, YI M Y, HAN D I, et al. Modified view factor method for estimating molecular backscattering probability in space conditions[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(2):336-341. [14] DAVIS D H. Monte Carlo calculation of molecular flow rates through a cylindrical elbow and pipes of other shapes[J]. Journal of Applied Physics, 1960, 31(11):69-76. [15] KLINKRAD H, KOPPENWALLNER G, JOHANNSMEIER D, et al. Free-molecular and transitional aerodynamics of spacecraft[J]. Advances in Space Research, 1995, 16(2):33-36. [16] 靳旭红, 黄飞, 程晓丽, 等. 超低轨航天器气动特性快速预测的试验粒子Monte Carlo方法[J]. 航空学报, 2017, 38(5):120625.JIN X H, HUANG F, CHENG X L, et al. The test particle Monte Carlo method for the prediction of aerodynamic properties of spacecraft in lower LEO[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):120625. (in Chinese) [17] VALLADO D A, FINKLEMAN D. A critical assessment of satellite drag and atmospheric density modeling[J]. Acta Astronautica, 2014, 95:141-165. [18] MARCOS F A. Accuracy of atmospheric drag models at low satellite altitudes[J]. Advances in Space Research 1990, 10(3-4):417-422. [19] COESA. USA standard atmosphere 1976[R]. Washington D C:USA Government Printing Office, 1976. [20] JACCHIA L G. Static diffusion models of the upper atmosphere with empirical temperature profiles[J]. Smithsonian Contributions to Astrophysics, 1965, 8(9):215-257. [21] PICONE J M, HEDIN A EF, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues[J]. Journal of Geophysical Research, Journal of Geophysical Research, 2002, 107(12):1468-1483. [22] BOWMAN B R,. TOBISKA W K, MARCOS F A, et al. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu, USA:AIAA, 2008. [23] BRUINSMA S. The DTM-2013 thermosphere model[J]. Journal of Space Weather and Space Climate, 2015, 5:A1. [24] GAPOSCHKIN E M, COSTER A J. Analysis of satellite drag[J]. The Lincoln Laboratory Journal, 1988, 1:203-224. [25] 尹凡, 马淑英, 李晶, 等. 大气阻力引起卫星轨道衰减的数值模拟[J]. 地球物理学报, 2013, 56(12):3980-3987.YIN F, MA S Y, LI J, et al. Simulation of orbit decay for LEO satellites caused by atmospheric drag[J]. Chinese Journal of Geophysics, 2013, 56(12):3980-3987. (in Chinese) [26] 刘卫, 王荣兰, 刘四清, 等. 基于小波变换的卫星阻力系数分析[J]. 宇航学报, 2015, 36(2):142-150.LIU W, WANG R L, LIU S Q, et al. Analysis of satellite drag coefficient based on wavelet transformation[J]. Journal of Astronautics, 2015, 36(2):142-150. (in Chinese) [27] 汪宏波, 赵长印, 柳仲贵, 等基于误差发散规律的低轨卫星大气阻力系数计算方法[J]. 天文学报, 2016, 57(4):447-460.WANG H B, ZHAO C Y, LIU Z G, et al. The method for calculating atmospheric drag coefficient based on the characteristics of along-track error in LEO orbit prediction[J]. Acta Astronomica Sinica, 2016, 57(4):447-460. (in Chinese) [28] BIRD G A. Monte Carlo simulation of gas flows[J]. Annual Review of Fluid Mechanics, 1978, 10:11-31. [29] MEHTA P M, MCLAUGHLIN C A, SUTTON E K. Drag coefficient modeling for grace using direct simulation Monte Carlo[J]. Advances in Space Research, 2013, 52(12):2035-2051. [30] FAN C E, GEE C, FONG M C. Monte Carlo simulation for backscatter of outgassing molecules from simple spacecraft surfaces[J]. Journal of Spacecraft and Rocket, 1994, 31(4):649-655. [31] 靳旭红, 黄飞, 程晓丽, 等. 航天器表面环境散射返回流TPMC模拟[J]. 计算物理, 2015, 32(5):529-536.JIN X H, HUANG F, CHENG X L, et al. Test particle Monte Carlo simulation of return flux on spacecraft surfaces due to ambient scatter of outgassing molecules[J] Chinese Journal of Computational Physics, 2015, 32(5):529-536. (in Chinese) [32] CHAO C C, GUNNING G R, MOE K, et al. An evaluation of Jacchia 71 and MSIS90 atmosphere models with NASA ODERACS decay data[J]. Journal of the Astronautical Sciences, 1997, 45:131-141. [33] KOPPENWALLNER G. Satellite aerodynamics and determination of thermospheric density and wind[J]. AIP Conference Proceedings, 2011, 1333:1307-1312. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|