Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (1) : 21-27     DOI: 10.16511/j.cnki.qhdxxb.2020.21.007
Special Section: Automotive Component |
Drum brake fatigue life predictions
Xiaoying WANG,Zijie FAN,Jiang BIAN,Liangjin GUI*()
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
Download: PDF(9052 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Drum brakes are a key safety component in heavy commercial vehicles, so they need accurate failure characteristic models. Drum cracking is the most common failure mechanism for drum brakes. This paper presents a coupled temperature-stress model for drum brakes that can obtain the dynamic stress curves for accelerated fatigue working conditions. Then, this paper fitted the relationship between the stress and strain of the material on the inner drum surface at high temperatures and used the former dynamic stress curves as the fatigue load. The Manson-Coffin-Basquin model was then used to predict the failure life of each point on the inner surface. This drum brake lifetime prediction method was then verified against accelerated fatigue test results. This model can include the effects of the load fluctuations on the drum during use, as well as the effect of the material performance degradation at high temperatures. This model is useful for optimizing engineering designs of drum brakes.

Keywords drum brake      fatigue life prediction      strain-life model     
Corresponding Authors: Liangjin GUI     E-mail: gui@tsinghua.edu.cn
Issue Date: 26 November 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoying WANG
Zijie FAN
Jiang BIAN
Liangjin GUI
Cite this article:   
Xiaoying WANG,Zijie FAN,Jiang BIAN, et al. Drum brake fatigue life predictions[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 21-27.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.21.007     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I1/21
  
  
  
10.16511/j.cnki.qhdxxb.2020.21.007.T001

数值计算模型中各部件的材料参数

部件 温度/℃ 比热容/(J·g-1·℃-1) 热传导系数/(W·m-1·℃-1) 热膨胀系数/(10-6·℃-1) Young's模量/GPa 密度/(kg·m-3)
制动鼓 20 0.503 42.38 4.386 100.0 7 220
100 0.530 43.06 11.653
200 0.563 44.23 12.836 99.69
300 0.611 43.55 13.580
400 0.641 40.67 13.578 96.27
500 0.701 39.72 13.804
制动蹄 0.452 48 11 205 7 800
摩擦片 1.178 1.98 7.55 7.65 2 150
  
  
  
  
  
  
  
10.16511/j.cnki.qhdxxb.2020.21.007.T002

灰铸铁材料试验得到的Manson-Coffin-Basquin模型参数

温度 σf εf b c
常温 659.2 0.053 3 -0.149 5 -0.642 8
500℃ 274.7 0.031 8 -0.102 2 -0.525 8
  
10.16511/j.cnki.qhdxxb.2020.21.007.T003

修正得到的制动鼓材料Manson-Coffin-Basquin模型参数

温度 σf εf b c
常温 659.2 0.053 3 -0.300 8 -0.642 8
500℃ 274.7 0.031 8 -0.253 6 -0.525 8
  
  
  
1 LIMPERT R . Brake design and safety[M]. 3rd ed. Warrendale: SAE, 2011.
doi: 10.4271/R-398
2 GUI L , WANG X , FAN Z , et al. A simulation method of thermo-mechanical and tribological coupled analysis in dry sliding systems[J]. Tribology International, 2016. 103, 121- 131.
doi: 10.1016/j.triboint.2016.06.021
3 FANCHER P . Discussion:"An analysis of speed, temperature, and performance characteristics of automotive drum brakes" (Day, A. J., 1988, ASME J. Tribol., 110, pp. 298-303)[J]. Journal of Tribology, 1988. 110 (2): 304- 304.
4 GAO C H , HUANG J M , LIN X Z , et al. Stress analysis of thermal fatigue fracture of brake disks based on thermomechanical coupling[J]. Journal of Tribology, 2006. 129 (3): 536- 543.
6 李卫.重型卡车持续制动制动器热机耦合分析及疲劳损伤预测[D].秦皇岛:燕山大学, 2013.
6 LI W. Thermal-mechanical coupling analysis and fatigue damage prediction on continuous braking of heavy truck brake[D]. Qinhuangdao: Yanshan University, 2013. (in Chinese)
7 KIM D J , LEE Y M , PARK J S , et al. Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface[J]. Materials Science and Engineering:A, Structural Materials:Properties, Microstructure and Processing, 2008. 483 (483-484): 456- 459.
8 MACKIN T J , NOE S C , BALL K J , et al. Thermal cracking in disc brakes[J]. Engineering Failure Analysis, 2002. 9 (1): 63- 76.
10 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.金属材料轴向等幅低循环疲劳试验方法: GB/T 15248-2008[S].北京:中国标准出版社, 2008.
10 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. The test method for axial loading constant-amplitude low-cycle fatigue of metallic materials: GB/T 15248-2008[S]. Beijing: Standards Press of China, 2008. (in Chinese)
11 PEVEC M , ODER G , POTR A?G I , et al. Elevated temperature low cycle fatigue of grey cast iron used for automotive brake discs[J]. Engineering Failure Analysis, 2014. 42, 221- 230.
doi: 10.1016/j.engfailanal.2014.03.021
12 ASTM Committee. Standard practice for strain controlled thermomechanical fatigue testing: E2368-10(2017)[S]. West Conshohocken: ASTM International, 2017.
13 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.金属材料热机械疲劳试验方法: GJB 6213-2008[S].北京:中国标准出版社, 2008.
13 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Testing method for thermal-mechanical fatigue of metallic materials: GJB 6213-2008[S]. Beijing: Standards Press of China, 2008. (in Chinese)
14 BASQUIN O H . The exponential law of endurance testing[J]. Proceedings of the American Society for Testing and Material, 1910. 10, 625- 630.
15 MANSON S S . Fatigue:A complex subject some simple approximation[J]. Experimental Mechanics, 1965. 5 (4): 193- 226.
doi: 10.1007/BF02321056
16 MITCHELL M R . Fundamentals of modern fatigue analysis for design[J]. ASM International, Fatigue and Fracture, 1996. 19, 227- 249.
17 STEPHENS R I , FATEMI A , STEPHENS R R , et al. Metal fatigue in engineering[M]. New York: John Wiley & Sons, 2000.
19 GAENSER H P . Some notes on gradient, volumetric and weakest link concepts in fatigue[J]. Computational Materials Science, 2008. 44 (2): 230- 239.
doi: 10.1016/j.commatsci.2008.03.021
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd