Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2020, Vol. 60 Issue (9) : 740-750     DOI: 10.16511/j.cnki.qhdxxb.2020.21.008
ELECTRICAL ENGINEERING |
Steady-state error and global stability analysis of energy balance control
SHI Bingqing, ZHAO Zhengming, YUAN Liqiang, FENG Gaohui
Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(4928 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Energy balance control uses electromagnetic energy conversion for system control. Energy balance control can provide coordinated, unified control of multiple goals that conditional controllers cannot provide by replacing the voltage and current with the energy into the energy storage elements. A system model is used to determine the control variable from the energy or power control target to improve the control system. However, the energy balance control method does not have either a steady state error analysis or a method to reduce the steady state error and there is no global stability analysis. This paper presents a steady-state error and global stability analysis for energy balance control. The three existing energy balance control methods have equivalent forms of the outer loop sliding mode surface and the inner loop controller. These are used to quantitatively analyze the steady-state error. A global Lyapunov stability analysis is provided along with a method for setting the energy balance control parameters.
Keywords energy balance control      error in steady state      stability analysis     
Issue Date: 04 July 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Bingqing
ZHAO Zhengming
YUAN Liqiang
FENG Gaohui
Cite this article:   
SHI Bingqing,ZHAO Zhengming,YUAN Liqiang, et al. Steady-state error and global stability analysis of energy balance control[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 740-750.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.21.008     OR     http://jst.tsinghuajournals.com/EN/Y2020/V60/I9/740
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 鲁挺. 大容量电力电子系统非理想功率脉冲特性及其控制方法[D]. 北京:清华大学, 2010. LU T. Characteristics and control methods of power pulses in high power electronic convertion[D]. Beijing:Tsinghua University, 2010. (in Chinese)
[2] 赵争鸣, 施博辰, 朱义诚. 高压大容量电力电子混杂系统控制技术综述[J]. 高电压技术, 2019, 45(7):2017-2027. ZHAO Z M, SHI B C, ZHU Y C. Control technologies for power electronic hybrid systems in high-voltage high-power applications:A review[J]. High Voltage Engineering, 2019, 45(7):2017-2027. (in Chinese)
[3] GE J J, ZHAO Z M, HE F B, et al. Transient power balance based control for Buck converters[C]//Proceedings of 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). Beijing, China:IEEE, 2014:1-5.
[4] GE J J, YUAN L Q, ZHAO Z M. Energy-balance based prediction for Boost converters[C]//Proceedings of 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC). Hefei, China:IEEE, 2016:1190-1194.
[5] GE J J, YUAN L Q, ZHAO Z M, et al. Tradeoff between the output voltage deviation and recovery time of Boost converters[J]. Journal of Power Electronics, 2015, 15(2):338-345.
[6] FENG G H, YUAN L Q, ZHAO Z M, et al. Transient performance improvement in the boundary control of Boost converters using synthetic optimized trajectory[J]. Journal of Power Electronics, 2016, 16(2):584-597.
[7] 冯高辉, 赵争鸣, 袁立强. 基于能量平衡的电能路由器综合控制技术[J]. 电工技术学报, 2017, 32(14):34-44. FENG G H, ZHAO Z M, YUAN L Q. Synthetical control technology of electric energy router based on energy balance relationship[J]. Transactions of China Electrotechnical Society, 2017, 32(14):34-44. (in Chinese)
[8] LU T, ZHAO Z M, ZHANG Y C, et al. A novel direct power control strategy based on energy interface concept for three-level PWM rectifier[C]//IEEE Vehicle Power and Propulsion Conference. New York, USA:IEEE, 2009:1356-1363.
[9] HE F B, ZHAO Z M, LU T, et al. Predictive DC voltage control for three-phase grid-connected PV inverters based on energy balance modeling[C]//Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems. Hefei, China:IEEE, 2010:516-519.
[10] 李凯, 赵争鸣, 袁立强, 等. 基于能量平衡的降低模块化多电平变换器子模块电容电压波动控制策略[J]. 电工技术学报, 2017, 32(14):17-26. LI K, ZHAO Z M, YUAN L Q, et al. Control strategy based on the energy balance for reducing sub-module capacitor voltage fluctuation of modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2017, 32(14):17-26. (in Chinese)
[11] YIN L, ZHAO Z M, LU T, et al. An improved DC-link voltage fast control scheme for a PWM rectifier-inverter system[J]. IEEE Transactions on Industry Applications, 2014, 50(1):462-473.
[12] GE J J, ZHAO Z M, YUAN L Q, et al. Energy feed-forward and direct feed-forward control for solid-state transformer[J]. IEEE Transactions on Power Electronics, 2015, 30(8):4042-4047.
[13] 石冰清, 赵争鸣, 魏树生, 等. 用于Boost变换器的无负载电流传感器滑模-预测控制策略[J]. 清华大学学报(自然科学版), 2019, 59(10):807-814. SHI B Q, ZHAO Z M, WEI S S, et al. Load-current-sensorless sliding-predictive control strategies for Boost converters[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(10):807-814. (in Chinese)
[14] SHI B Q, ZHAO Z M, WEI S S, et al. Self-correction and dead-beat current control strategy for digital programmed Boost converter[C]//Proceedings of 2019 IEEE Energy Conversion Congress and Exposition (ECCE). Baltimore, USA:IEEE, 2019:691-694.
[1] JU Jiahe, ZHAO Zhengming, SHI Bochen, ZHU Yicheng, YU Zhujun, LUO Yunfei, ZHANG Zhixue, HU Sideng, HE Xiangning. Energy balancing control for locomotive converter based on a discrete state event driven method[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 763-772.
[2] SONG Mingliang, ZHOU Bin, ZHANG Rong. Design of a resonator vibration control system based on parametric drive[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 87-93.
[3] SUN Hongmei, ZHAO Fei, ZHANG Yaxin. Effects of openings and nozzles on the load-carrying capability of a horizontal tank[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(1): 102-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd