Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2020, Vol. 60 Issue (9) : 751-762     DOI: 10.16511/j.cnki.qhdxxb.2020.21.009
ELECTRICAL ENGINEERING |
Analysis of the high-frequency oscillation characteristics of a multi-port converter with an AC link
WEI Shusheng1, ZHAO Zhengming1, WEN Wusong1, LI Kai2, YUAN Liqiang1, CAI Weiqian1
1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
2. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
Download: PDF(11494 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  High-frequency links based on modular multi-active bridges (MMAB) are useful for high power multi-port converters since they are modular, efficient and isolate the various ports. High-frequency AC buses have intrinsic oscillations that do not occur in DC buses which increase the converter losses and make the system less safe. Also, oscillations in one module affect the operations of other modules connected to the common AC bus. This study modeled two kinds of converters with each having two modules to study the effects of the high-frequency oscillations in the AC-link in an MMAB. The frequency domain analysis method was then used to investigate the relationship between the oscillations and the resonant tank parameters, including the stray parameters of the high-frequency transformer (HFT) and the stray capacitance of the switching devices. The results showed the key factors leading to the oscillations for both the uncontrolled mode and the controlled mode. Tests were conducted for the two modes and for switching between the two modes. The analytical results are verified by experimental data which would lay a foundation to reduce the oscillations in MMAB in the future.
Keywords AC link bus      modular multi-active bridge (MMAB)      high-frequency oscillation      stray parameters     
Issue Date: 04 July 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Shusheng
ZHAO Zhengming
WEN Wusong
LI Kai
YUAN Liqiang
CAI Weiqian
Cite this article:   
WEI Shusheng,ZHAO Zhengming,WEN Wusong, et al. Analysis of the high-frequency oscillation characteristics of a multi-port converter with an AC link[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 751-762.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.21.009     OR     http://jst.tsinghuajournals.com/EN/Y2020/V60/I9/751
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 赵争鸣, 施博辰, 朱义诚. 对电力电子学的再认识——历史、现状及发展[J]. 电工技术学报, 2017, 32(12):5-15.ZHAO Z M, SHI B C, ZHU Y C. Reconsideration on power electronics:The past, present and future[J]. Transactions of China Electrotechnical Society, 2017, 32(12):5-15.(in Chinese)
[2] 冯高辉, 赵争鸣, 袁立强. 基于能量平衡的电能路由器综合控制技术[J]. 电工技术学报, 2017, 32(14):34-44. FENG G H, ZHAO Z M, YUANL Q. Synthetical control technology of electric energy router based on energy blance relationship[J]. Transactions of China Electrotechnical Society, 2017, 32(14):34-44. (in Chinese)
[3] 李子欣, 王平, 楚遵方, 等. 面向中高压智能配电网的电力电子变压器研究[J]. 电网技术, 2013, 37(9):2592-2601.LI Z X, WANG P, CHU Z F, et al. Research on medium and high voltage smart distribution grid oriented power electronic transformer[J]. Power System Technology. 2013, 37(9):2592-2601. (in Chinese)
[4] 段青, 徐嘉超, 盛万兴, 等.基于级联高频变压器的多端口直流电能路由器[J].电网技术, 2019, 43(8):2934-2941. DUAN Q, XU J C, SHENG W X, et al. Multi-port DC electric energy router based on cascaded high frequency transformer[J]. Power System Technology. 2019, 43(8):2934-2941. (in Chinese)
[5] ZUMEL P, FERNANDEZ C, LAZARO A. Overall analysis of a modular multi active bridge converter[C]//Proceedings of 2014 IEEE 15th Workshop on COMPEL. Santander, Spain:IEEE, 2014:1093-5142.
[6] LI K, ZHAO Z M, YUAN L Q, et al. Synergetic control of high-frequency-link based multi-port solid state transformer[C]//Proceedings of 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, USA:IEEE, 2018:2329-3721.
[7] 张春朋, 李凯, 赵争鸣, 等. 一种全隔离型多端口换流器:201810366809.4. 2018-10-16.ZHANG C P, LI K, ZHAO Z M, et al. Full-isolation type multi-port converter. 201810366809. 4. 2018-10-16.(in Chinese)
[8] 李方正, 孙旭东, 黄立培, 等.大容量变流器复杂形状直流母线的PEEC建模[J]. 清华大学学报(自然科学版), 2009, 49(8):1089-1092.LI F Z, SUN X D, HUANG L P, et al. PEEC modeling of complex DC buses in high power converters[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(8):1089-1092.(in Chinese)
[9] 于华龙, 赵争鸣, 袁立强, 等. 高压IGBT串联变换器直流母排设计与杂散参数分析[J]. 清华大学学报(自然科学版), 2014, 54(4):540-545.YU H L, ZHAO Z M, YUAN L Q, et al. High-voltage IGBTs series converter bus bar design and stray parameter analysis[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(4):540-545. (in Chinese)
[10] 王旭东, 朱义诚, 赵争鸣, 等. 驱动回路参数对碳化硅MOSFET开关瞬态过程的影响[J]. 电工技术学报, 2017, 32(13):23-30.WANG X D, ZHU Y C, ZHAO Z M, et al. Impact of gate-loop parameters on the switching behavior of SiC MOSFETs[J]. Transactions of China Electrotechnical Society, 2017, 32(13):23-30. (in Chinese)
[11] 赵争鸣, 袁立强, 鲁挺. 电力电子系统电磁瞬态过程[M]. 北京:清华大学出版社, 2017.ZHAO Z M, YUAN L Q, LU T. Electromagnetic transients of power electronics systems[M]. Beijing:Tsinghua University Press, 2017. (in Chinese)
[12] CHEN W, LEE F C, JOVANOVIC M M, et al. A comparative study of a class of full bridge zero-voltage-switched PWM converters[C]//Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition (APEC). Dallas, USA:IEEE, 1995:893-899.
[13] 阮新波. 脉宽调制DC/DC全桥变换器的软开关技术[M]. 北京:科学出版社, 2012.RUAN X B. Soft switching technology of Full-bridge DC/DC converter based on pulse width modulation[M]. Beijing:Science Press, 2012. (in Chinese)
[14] 崔彬, 李欣阳, 薛芃, 等.双主动全桥变换器的高频振荡影响因素[J]. 清华大学学报(自然科学版), 2020, 60(6):530-536. CUI B, LI X Y, XUE P, et al. Factors influencing high frequency oscillations in dual active bridge converters[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(6):530-536. (in Chinese)
[15] QIN Z, SHEN Z, BLAABJERG F. Modelling and analysis of the transformer current resonance in dual active bridge converters[C]//Proceedings of 2017 IEEE Energy Conversion Congress and Exposition (ECCE). Cincinnati, USA:IEEE, 2017:4520-4524.
[16] SUN J N, YUAN L Q, GU Q, et al. Startup strategy with constant peak transformer current for solid-state transformer in distribution network[J]. IEEE Transactions on Industry Application, 2019, 55(2):1740-1751.
[17] MUSZNICKI P, CHRZAN P J, RUCINSKI M, et al. Adaptive estimation of the transformer stray capacitances for DC-DC converter modelling[J]. IET Power Electronics, 2016, 9(15):2865-2870.
[18] DALESSANDRO L, SILVEIRA C, Kolar J W. Self-capacitance of high-voltage transformers[J]. IEEE Transactions on Power Electronics, 2017, 22(5):2081-2092.
[19] MASSARINI A, KAZIMIERCZUK M K. Self capacitance of inductors[J]. IEEE Transactions on Power Electronics, 1997, 12(4):671-676.
[20] CHEN K N, ZHAO Z M, YUAN L Q, et al. The impact of nonlinear junction capacitance on switching transient and it's modeling for SiC MOSFET[J]. IEEE Transactions on Electron Devices, 2015, 62(2):333-338.
[21] CUI B, XUE P, JIANG X H. Elimination of high frequency oscillation in dual active bridge converters by dv/dt optimization[J]. IEEE Access, 2019, 7:55554-55564.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd