Physics and Engineering Physics |
|
|
|
|
|
Review of uranium separation and enrichment methods in water |
Xiangwei WANG1,Manchun LIANG1,*( ),Gang LI2,Shuijun HE1 |
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China 2. China Nuclear Energy(Tianjin) Equipment Co. Ltd., Tianjin 300300, China |
|
|
Abstract Uranium is the key fuel component in nuclear power plants. However, the possibility of uranium and its compounds entering the water supply can seriously harm the environment and human health. Therefore, the analysis and treatment of uranium in water have attracted much attention. This paper describes the main methods, the latest research progress and existing problems related to uranium separation and enrichment from water starting from uranium analyses of laboratory water to the treatment of uranium-bearing water in the environment. Finally, the advantages and disadvantages of uranium separation and enrichment methods in water and their applications are summarized.
|
Keywords
uranium in water
separation
enrichment
environmental pollution
|
Corresponding Authors:
Manchun LIANG
E-mail: lmc@tsinghua.edu.cn
|
Issue Date: 26 November 2020
|
|
|
2 |
ZHANG Y W , LIU Z Y , FAN F Y , et al. Extraction of uranium and thorium from nitric acid solution by TODGA in ionic liquids[J]. Separation Science and Technology, 2014. 49 (12): 1895- 1902.
doi: 10.1080/01496395.2014.903279
|
4 |
DIETZ M L , HORWITZ E P , SAJDAK L R , et al. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media[J]. Talanta, 2001. 54 (6): 1173- 1184.
doi: 10.1016/S0039-9140(01)00390-3
|
5 |
GAUTIER C , COPPO M , CAUSSIGNAC C , et al. Zr and U determination at trace level in simulated deep groundwater by Q ICP-MS using extraction chromatography[J]. Talanta, 2013. 106, 1- 7.
doi: 10.1016/j.talanta.2012.12.019
|
7 |
EHSAN Z , SEYED R Y . Sorption and preconcentration of uranium and thorium from aqueous solutions using multi-walled carbon nanotubes decorated withmagnetic nanoparticles[J]. Radiochimica Acta, 2015. 103 (12): 835- 841.
|
8 |
REZAEE M , ASSADI Y , MILANI H M R , et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006. 1116 (12): 1- 9.
|
9 |
REZAEE M , KHALILIAN F . Preconcentration of uranium in water samples using dispersive liquid-liquid micro-extraction coupled with solid-phase extraction and determination with inductively coupled plasma-optical emission spectrometry[J]. Bulletin of the Chemical Society of Ethiopia, 2015. 29 (3): 367- 376.
doi: 10.4314/bcse.v29i3.4
|
10 |
BICIM T , YAMAN M . Sensitive determination of uranium in natural waters using UV-Vis spectrometry after preconcentration by ion-imprinted polymer-ternary complexes[J]. Journal of AOAC International, 2016. 99 (4): 1043- 1048.
doi: 10.5740/jaoacint.16-0088
|
12 |
TETGURE S R , CHOUDHARY B C , GAROLE D J , et al. Novel extractant impregnated resin for preconcentration and determination of uranium from environmental samples[J]. Microchemical Journal, 2017. 130, 442- 451.
doi: 10.1016/j.microc.2016.10.019
|
13 |
CHENG Y X , HE P , DONG F Q , et al. Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(Ⅵ) from real uranium mine water[J]. Chemical Engineering Journal, 2009. 367, 198- 207.
|
14 |
BERTOLI A C , QUINT?O M C , DE ABREU H A , et al. Uranium separation from acid mine drainage using anionic resins-An experimental/theoretical investigation of its chemical speciation and the interaction mechanism[J]. Journal of Environmental Chemical Engineering, 2019. 7 (1): 102790.
|
15 |
AMPHLETT J T M , CHOI S , PARRY S A , et al. Insights on uranium uptake mechanisms by ion exchange resins with chelating functionalities:Chelation vs. anion exchange[J]. Chemical Engineering Journal, 2020. 392, 123712.
doi: 10.1016/j.cej.2019.123712
|
16 |
RUSDIANASARI , BOW Y , DEWI T , et al. Extraction of uranium from artificial liquid waste using continuous flow emulsion liquid membrane technique[J]. E3S Web of Conferences, 2018. 68, 1- 7.
|
17 |
DOLAK I . Selective adsorption of U(Ⅵ) by using U(Ⅵ)-imprinted poly-hydroxyethyl methacrylate-methacryloyl-l-histidine (p-[HEMA-(MAH)(3)]) cryogel polymer[J]. Applied Ecology and Environmental Research, 2019. 17 (2): 3165- 3178.
|
18 |
钱骏,张爽,周嫒,等.定位聚合制备表面离子印迹磁性微球用于水中铀(Ⅵ)的快速有效去除[C]//第十三届全国核化学与放射化学学术研讨会.大理,中国:中国核学会核化学与放射化学分会, 2014: 203-203.
|
18 |
QIAN J, ZHANG S, ZHOU Y, et al. Quick and effective removal of U(Ⅵ) in water by location polymerization-made surface ion imprinted magnetic microspheres[C]//The 13th National Symposium on Nuclear Chemistry and Radiochemistry. Dali, China: Branch of Nuclear Chemistry and Radiochemistry, Chinese Nuclear Association, 2014: 203-203. (in Chinese)
|
19 |
SAITO T , BROWN S , CHATTERJEE S , et al. Uranium recovery from seawater:Development of fiber adsorbents prepared via atom-transfer radical polymerization[J]. Journal of Materials Chemistry A, 2014. 2 (35): 14674- 14681.
doi: 10.1039/C4TA03276D
|
20 |
ELWAKEEL K Z , ATIA A A , GUIBAL E . Fast removal of uranium from aqueous solutions using tetraethylenepentamine modified magnetic chitosan resin[J]. Bioresource Technology, 2014. 160, 107- 114.
doi: 10.1016/j.biortech.2014.01.037
|
21 |
ORABI A , ATREES M , SALEM H . Selectivepreconcentration of uranium on chitosan stearoyl thiourea prior to its spectrophotometric determination[J]. Separation Science and Technology, 2018. 53 (14): 2267- 2283.
doi: 10.1080/01496395.2018.1445113
|
22 |
HAJIYEVA S R , BAHMANOVA F N , ALIRZAEVA E N , et al. Uranium preconcentration with a chelating sorbent based on maleic anhydride-styrene copolymer[J]. Radiochemistry, 2018. 60 (2): 195- 200.
doi: 10.1134/S1066362218020108
|
23 |
MISHRA S , DWIVEDI J , KUMARC A , et al. Studies on salophen anchored micro/meso porous activated carbon fibres for the removal and recovery of uranium[J]. RSC Advances, 2015. 5 (42): 33023- 33036.
doi: 10.1039/C5RA03168K
|
24 |
HUANG S Y , JIANG S B , PANG H W , et al. Dual functional nanocomposites of magnetic MnFe2O4 and fluorescent carbon dots for efficient U(Ⅵ) removal[J]. Chemical Engineering Journal, 2019. 368, 941- 950.
doi: 10.1016/j.cej.2019.03.015
|
25 |
CARBONI M , ABNEY C W , LIU S B , et al. Highly porous and stable metal-organic frameworks for uranium extraction[J]. Chemical Science, 2013. 4 (6): 2396- 2402.
doi: 10.1039/c3sc50230a
|
26 |
ZHANG H L , LIU W , LI A , et al. Three mechanisms in one material:Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction[J]. Angewandte Chemie, 2019. 58 (45): 16110- 16114.
doi: 10.1002/anie.201909718
|
27 |
NOLI F , KAPASHI E , KAPNISTI M . Biosorption of uranium and cadmium using sorbents based on aloe vera wastes[J]. Journal of Environmental Chemical Engineering, 2019. 7 (2): 102985.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|