Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2020, Vol. 60 Issue (12) : 1039-1046     DOI: 10.16511/j.cnki.qhdxxb.2020.21.013
Physics and Engineering Mechanics |
Numerical simulation of opposed-flow flame spread of PMMA with melting mushy zone
Shengfeng LUO1,Qiyuan XIE2,*(),Hui ZHANG1,*(),Guangjian WANG3
1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
3. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(5135 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The opposed-flow flame spreading along a polymethyl methacrylate (PMMA) sheet was investigated numerically. The melting process included a mushy transition region in the energy equation during the flame spreading. The fuel was ignited by applying a fixed heat flow at one position on the upper boundary of the material. The results show the typical procedures of ignition followed by unstable to stable flame spreading. The morphology of the mushy zone and the molten phase thickness were obtained based on the temperature field. The results show that the mushy zone is thin near the flame front and gradually thickens downstream of the flame front. Additionally, the melt region is shallow near the flame front and gradually deepens with increasing the distance from the flame front. The numerical results and a scale analysis show that the melt interface location can be approximated by a quadratic function.

Keywords polymethyl methacrylate (PMMA)      flame spread      numerical simulation      melt transition     
Corresponding Authors: Qiyuan XIE,Hui ZHANG     E-mail: xqy@ustc.edu.cn;zhhui@tsinghua.edu.cn
Issue Date: 14 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shengfeng LUO
Qiyuan XIE
Hui ZHANG
Guangjian WANG
Cite this article:   
Shengfeng LUO,Qiyuan XIE,Hui ZHANG, et al. Numerical simulation of opposed-flow flame spread of PMMA with melting mushy zone[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(12): 1039-1046.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.21.013     OR     http://jst.tsinghuajournals.com/EN/Y2020/V60/I12/1039
  
10.16511/j.cnki.qhdxxb.2020.21.013.T001

模型主要物性参数

参数 数值
固相导热系数ks/(W·m-1·K-1) 0.2
固相密度ρs/(kg·m-3) 1 190
液相导热系数kl/(W·m-1·K-1) 0.36
固相线温度Ts/K 440
热解活化能Ec/(J·mol-1) 129 872.9
气体导热系数kg/(W·m-1·K-1) 0.041 1
热解反应热qc/(J·kg-1) 9.41×105
燃烧热qg/(J·kg-1) -2.59×107
初始氧质量分数Yo, ∞ 0.3
可燃气反应当量比uf 1
PMMA比热容Cps/(J·kg-1·K-1) 1 460
液相密度ρl/(kg·m-3) 1 500
液相线温度Tl/K 500
热解指前因子Ac/(J·mol-1) 2.82×109
渗透系数Ke 0.95
气体比热容Cpg/(J·kg-1·K-1) 1 007
初始温度T/K 300
发射系数ε 0.84
氧气反应当量比uo 4
  
  
  
  
  
  
  
1 BHATTACHARJEE S , AYALA R , WAKAI K , et al. Opposed-flow flame spread in microgravity-theoretical prediction of spread rate and flammability map[J]. Proceedings of the Combustion Institute, 2005. 30 (2): 2279- 2286.
url: http://www.sciencedirect.com/science/article/pii/S0082078404000724
2 BHATTACHARJEE S , TAKAHASHI S , WAKAI K , et al. Correlating flame geometry in opposed-flow flame spread over thin fuels[J]. Proceedings of the Combustion Institute, 2011. 33 (2): 2465- 2472.
url: http://www.sciencedirect.com/science/article/pii/S1540748910000830
3 BHATTACHARJEE S , TRAN W , LAUE M , et al. Experimental validation of a correlation capturing the boundary layer effect on spread rate in the kinetic regime of opposed-flow flame spread[J]. Proceedings of the Combustion Institute, 2015. 35 (3): 2631- 2638.
doi: 10.1016/j.proci.2014.06.125
4 BHATTACHARJEE S , LAUE M , CARMIGNANI L , et al. Opposed-flow flame spread:A comparison of microgravity and normal gravity experiments to establish the thermal regime[J]. Fire Safety Journal, 2016. 79 (Supplement C): 111- 118.
url: http://www.sciencedirect.com/science/article/pii/S0379711215300424
5 BHATTACHARJEE S , SIMSEK A , MILLER F , et al. Radiative, thermal, and kinetic regimes of opposed-flow flame spread:A comparison between experiment and theory[J]. Proceedings of the Combustion Institute, 2017. 36 (2): 2963- 2969.
doi: 10.1016/j.proci.2016.06.025
6 FERNANDEZ-PELLO A , RAY S , GLASSMAN I . Downward flame spread in an opposed forced flow[J]. Combustion Science and Technology, 1978. 19 (1-2): 19- 30.
doi: 10.1080/00102207808946860
7 FERNANDEZ-PELLO A , WILLIAMS F A . Laminar flame spread over PMMA surfaces[J]. Symposium (International) on Combustion, 1975. 15 (1): 217- 231.
doi: 10.1016/S0082-0784(75)80299-2
8 FERNANDEZ-PELLO A C , SANTORO R J . On the dominant mode of heat transfer in downward flame spread[J]. Symposium (International) on Combustion, 1979. 17 (1): 1201- 1209.
doi: 10.1016/S0082-0784(79)80114-9
9 FERNáNDEZ-TARRAZO E , LI?áN A . Flame spread over solid fuels in opposite natural convection[J]. Proceedings of the Combustion Institute, 2002. 29 (1): 219- 225.
url: http://www.sciencedirect.com/science/article/pii/S154074890280030X
10 WICHMAN I S , WILLIAMS F A . Comments on rates of creeping spread of flames over thermally thin fuels[J]. Combustion Science and Technology, 1983. 33 (1-4): 207- 214.
doi: 10.1080/00102208308923676
11 TOLEJKO K , FEIER I I , T'IEN J S . Effects of fuel Lewis number on flame spread over solids[J]. Proceedings of the Combustion Institute, 2005. 30 (2): 2263- 2270.
url: http://www.sciencedirect.com/science/article/pii/S008207840400181X
12 JOHNSTON M C , T'IEN J S , MUFF D E , et al. Self induced buoyant blow off in upward flame spread on thin solid fuels[J]. Fire Safety Journal, 2015. 71, 279- 286.
doi: 10.1016/j.firesaf.2014.11.007
13 BLASI C D , WICHMAN I S . Effects of solid-phase properties on flames spreading over composite materials[J]. Combustion and Flame, 1995. 102 (3): 229- 240.
doi: 10.1016/0010-2180(95)00003-O
14 BLASI C D , CRESCITELLI S , RUSSO G , et al. Numerical simulation of opposed flow flame spread over a thermally thick solid fuel[J]. Combustion Science and Technology, 1987. 54 (1-6): 25- 36.
doi: 10.1080/00102208708947041
15 ZHENG G Y , WICHMAN I S , BENARD A . Opposed-flow flame spread over polymeric materials:Influence of phase change[J]. Combustion and Flame, 2001. 124 (3): 387- 408.
url: http://www.onacademic.com/detail/journal_1000034132591610_7351.html
16 MIRANDA FUENTES J , JOHANNES K , KUZNIK F , et al. Melting with convection and radiation in a participating phase change material[J]. Applied Energy, 2013. 109 (Supplement C): 454- 461.
url: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72a3b71dca0cdf16dc66f9d444e46636
17 ANANTH R , NDUBIZU C C , TATEM P A . Burning rate distributions for boundary layer flow combustion of a PMMA plate in forced flow[J]. Combustion and Flame, 2003. 135 (1): 35- 55.
url: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5442382e72d96a9fc46630477f761dd5
18 BHATTACHARJEE S , BHASKARAN K , ALTENKIRCH R A . Effects of pyrolysis kinetics on opposed-flow flame spread modeling[J]. Combustion Science and Technology, 1994. 100 (1-6): 163- 182.
doi: 10.1080/00102209408935451
19 DL BLASI C , CONTINILLO G , CRESCITELLI S , et al. Numerical simulation of opposed flow flame spread over a thermally thick solid fuel[J]. Combustion Science and Technology, 1987. 54 (1-6): 25- 36.
doi: 10.1080/00102208708947041
20 JUSTE G L , CONTAT-RODRIGO L . Temperature field reconstruction from phase-map obtained with moiré deflectometry in diffusion flame on solids[J]. Combustion Science and Technology, 2007. 179 (7): 1287- 1302.
doi: 10.1080/00102200601147773
21 BHATTACHARIEE S , KING M D , TAKAHASHI S , et al. Downward flame spread over poly(methyl)methacrylate[J]. Proceedings of the Combustion Institute, 2000. 28 (2): 2891- 2897.
url: http://www.sciencedirect.com/science/article/pii/S0082078400807134
22 BHATTACHARJEE S , KING M D , PAOLINI C . Structure of downward spreading flames:A comparison of numerical simulation, experimental results and a simplified parabolic theory[J]. Combustion Theory and Modelling, 2006. 8 (1): 23- 39.
23 FERNáNDEZ-PELLO A , WILLIAMS F A . A theory of laminar flame spread over flat surfaces of solid combustibles[J]. Combustion and Flame, 1977. 28 (C): 251- 277.
url: http://www.sciencedirect.com/science/article/pii/0010218077900323
24 WICHMAN I S . Flame spread in an opposed flow with a linear velocity-gradient[J]. Combustion and Flame, 1983. 50 (3): 287- 304.
url: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102208408923808
25 DE RIS J . Spread of a laminar diffusion flame[J]. Proceedings of the Combustion Institute, 1969. 12 (1): 241- 252.
url: http://www.sciencedirect.com/science/article/pii/S0082078469804078
26 RAY S R , GLASSMAN I . The detailed processes involved in flame spread over solid fuels[J]. Combustion Science and Technology, 1983. 32 (1-4): 33- 48.
doi: 10.1080/00102208308923651
[1] LI Yu, WANG Xiangqin, MIN Jingchun. Numerical simulation of fuel flow and heat transfer in a serpentine tube considering the fuel variable properties[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 337-345.
[2] SHI Yunjiao, ZHAO Ningbo, ZHENG Hongtao. Impact of inlet distortion on the flow characteristics of a heavy-duty gas turbine cylinder pressure[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 90-98.
[3] LI Congjian, GAO Hang, LIU Yi. Fast reconstruction of a wind field based on numerical simulation and machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 882-887.
[4] ZHONG Maohua, HU Peng, CHEN Junfeng, CHENG Huihang, WU Le, WEI Xuan. Research for smoke control in a subway tunnel under the ceiling multi-point vertical smoke exhaust[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 754-764.
[5] LI Dayu, ZHAO Kun, ZHOU Kuibin, SUN Penghui, WU Jinmo. Effects of the backboard on downward flame spread over polymethyl methacrylate[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 783-791.
[6] SUN Jihao, LUO Shaowen, ZHAO Ningbo, YANG Huiling, ZHENG Hongtao. Comparison of NOx numerical models for methane/air combustion simulations[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 623-632.
[7] SUN Yifan, ZHU Wei, WU Yuxin, QI Haiying. The applicability study of Gao-Yong turbulence model to boundary layer transitions[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 642-648.
[8] LIU Yu, ZHAO Miao, ZHANG Zhang, JIA He, HUANG Wei. Simulation of thermochemical nonequilibrium flow around a conical deceleration structure[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 386-393,413.
[9] GAO Chang, LI Yanjun, YU Li, NIE Shunchen. Effect of sail fullness on the aerodynamic performance of ringsail parachutes[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 322-329.
[10] CHEN Guanhua, CHEN Yaqian, ZHOU Ning, JIA He, RONG Wei, XUE Xiaopeng. Flat circular parachute with lateral mobility[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 338-347.
[11] YAN Huihui, LI Haoyu, ZHOU Bohao, ZHANG Yuzhou, LAN Xudong. Research and optimization of the mechanism of centrifugal compressor[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1672-1685.
[12] GAO Qunxiang, SUN Qi, PENG Wei, ZHANG Ping, ZHAO Gang. Whole process simulation method of sulfuric acid decomposition in the iodine-sulfur cycle for hydrogen production[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 24-32.
[13] DU Wei, CHEN Haitao, ZOU Biao, REN Weida, ZHU Xiaokang, LI Cong. Flame spread and combustion characteristics of straw bales from a point fire source[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1088-1093.
[14] SHI Lin, XU Qianghui. Fundamental studies of air injection for heavy crude oil recovery and its applications[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 722-734.
[15] HE Xin, XUE Rui, ZHENG Xing, ZHANG Qian, GONG Jianliang. Skin friction reduction for boundary layer combustion in a scramjet engine[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 562-572.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd