Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (1) : 42-49     DOI: 10.16511/j.cnki.qhdxxb.2020.21.015
Mechanical Engineering |
Clutched elastic actuator to drive a lower limb exoskeleton hip joint for paraplegic patients
Yulin LIU,Yinbo LI,Renhao LU,Xinyu GUAN*(),Linhong JI
Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(6479 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Lower limb exoskeletons can help paraplegic patients walk through rehabilitation. Powered exoskeletons do not require much muscle strength in the affected limbs, but the drive motors are rather large and heavy. Unpowered energy-storage exoskeletons do not require motors, but require more patient muscle strength which may cause fatigue during continuous use. This paper describes a clutched elastic actuator based on a ratchet mechanism that can be used as the hip joint driver for a lower limb of an exoskeleton. Patients rely on their upper limb and trunk muscles and crutches to slowly transfer the center of gravity during the support phase. The motor then stores energy during this motion in a torsional spring. During the swing phase, the torsional spring then quickly releases energy to help the patient step forward and complete a gait cycle. This paper presents a model for the driver during the support phase (spring energy storage) and the swing phase (spring energy release). The angular acceleration and deceleration are selected to minimize the peak power. Simulations show that the clutched elastic actuator significantly reduces the average power and the peak power compared with a motor and gearbox driving the patient's hip joint. Therefore, the system can have small low torque, low power motors to reduce the size and weight of the actuators and the entire exoskeleton.

Keywords exoskeletons      compliant actuators      clutched actuators      ratchet mechanisms      paraplegic     
Corresponding Authors: Xinyu GUAN     E-mail: guanxinyu@tsinghua.edu.cn
Issue Date: 26 November 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yulin LIU
Yinbo LI
Renhao LU
Xinyu GUAN
Linhong JI
Cite this article:   
Yulin LIU,Yinbo LI,Renhao LU, et al. Clutched elastic actuator to drive a lower limb exoskeleton hip joint for paraplegic patients[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 42-49.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.21.015     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I1/42
  
  
  
  
10.16511/j.cnki.qhdxxb.2020.21.015.T001

驱动器模型参数及人体模型参数

参数符号 参数含义 参数数值
Jm 电机的转动惯量 44 g·cm2
Jg 齿轮减速箱相对于输出轴的转动惯量 9.4 g·cm2
Js 小锥齿轮的转动惯量 3.1 g·cm2
Jb 大锥齿轮的转动惯量 204.5 g·cm2
Ng 齿轮减速箱的传动比 112.67
Nb 锥齿轮传动的传动比 3.615
ηg 齿轮减速箱的效率 0.74
ηb 锥齿轮传动的效率 0.95
k 扭簧的刚度 32.34 N·m/rad
g 重力加速度 9.8 m/s2
KT 电机转矩常数 37.5 mN·m/A
KE 电机转速常数 255 r/(min·V)
R 电机内阻 0.236 Ω
ml 人腿质量 11.323 kg [15]
ll 人腿质心距髋关节转轴的距离 0.383 m [15]
jl 人腿相对于髋关节的转动惯量 2.834 kg·m2 [16]
  
  
  
  
  
10.16511/j.cnki.qhdxxb.2020.21.015.T002

不同优化目标下离合式弹性驱动器和刚性驱动器的参数

驱动器 优化目标 峰值功率/W 平均功率/W 峰值力矩/(mN·m) 均方根力矩/(mN·m)
离合式弹性驱动器 峰值功率 6.150 4.160 64.6 47.0
平均功率 15.066 3.931 64.2 29.1
刚性驱动器 峰值功率 111.511 28.236 129.6 79.8
平均功率 142.794 25.614 172.9 87.7
  
1 KIRSHBLUM S C , BURNS S P , BIERING-SORENSEN F , et al. International standards for neurological classification of spinal cord injury (Revised 2011)[J]. The Journal of Spinal Cord Medicine, 2011. 34 (6): 535- 546.
doi: 10.1179/204577211X13207446293695
2 MAIMOUN L , FATTAL C , MICALLEF J , et al. Bone loss in spinal cord-injured patients:From physiopathology to therapy[J]. Spinal Cord, 2006. 44 (4): 203- 210.
doi: 10.1038/sj.sc.3101832
3 JOHNSON W B , FATONE S , GARD S A . Walking mechanics of persons who use reciprocating gait orthoses[J]. Journal of Rehabilitation Research and Development, 2009. 46 (3): 435- 446.
4 COLOMBO G , WIRZ M , DIETZ V . Driven gait orthosis for improvement of locomotor training in paraplegic patients[J]. Spinal Cord, 2001. 39 (5): 252- 255.
doi: 10.1038/sj.sc.3101154
5 陈峰.可穿戴型助力机器人技术研究[D].合肥:中国科学技术大学, 2007.
5 CHEN F. Research on the wearable power assist robot[D]. Hefei: University of Science and Technology of China, 2007. (in Chinese)
6 ESQUENAZI A , TALATY M , PACKEL A , et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine & Rehabilitation, 2012. 91 (11): 911- 921.
7 PAN Y T, LAMB Z, MACIEVICH J, et al. A vibrotactile feedback device for balance rehabilitation in the EksoGTTM robotic exoskeleton[C]//Proceedings of the 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). Kuala Lumpur, Malaysia: IEEE, 2018: 569-576.
8 IMAI H, NOZAWA M, KAWAMURA Y, et al. Human motion oriented control method for humanoid robot[C]//Proceedings of the 11th IEEE International Workshop on Robot and Human Interactive Communication. Berlin, Germany: IEEE, 2002: 211-216.
9 AUDU M L , TO C S , KOBETIC R , et al. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010. 18 (6): 610- 618.
doi: 10.1109/TNSRE.2010.2047594
10 GUAN X, JI L, WANG R, et al. Optimization of an unpowered energy-stored exoskeleton for patients with spinal cord injury[C]//Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA: IEEE, 2016: 5030-5033.
11 WHITTLE M W . Gait analysis:An introduction[M]. 2nd ed. London: Reed Educational and Professional Publishing, 1997. 125- 142.
12 吴谦.截瘫助行下肢外骨骼稳定步态参数学习及其仿真实现[D].成都:电子科技大学, 2019.
12 WU Q. Simulation realization of stable gait parameters learning for paraplegic lower limb walking assistance exoskeleton[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese)
13 LI Y, LI Z, PENZLIN B, et al. Design of the clutched variable parallel elastic actuator (CVPEA) for lower limb exoskeletons[C]//Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE, 2019: 4436-4439.
14 LI Y , GUAN X , LI Z , et al. Analysis, design, and preliminary evaluation of a parallel elastic actuator for power-efficient walking assistance[J]. IEEE Access, 2020. 8, 88060- 88075.
doi: 10.1109/ACCESS.2020.2993183
16 WINTER D A . Biomechanics and motor control of human movement[M]. 4 ed. New Jersey: John Wiley & Sons, 2009. 83- 86.
17 LI Y , GUAN X , HAN X , et al. Design and preliminary validation of a lower limb exoskeleton with compact and modular actuation[J]. IEEE Access, 2020. 8, 66338- 66352.
doi: 10.1109/ACCESS.2020.2985910
18 GUAN X , LIU Y , GAO L , et al. Trunk muscle activity patterns in a person with spinal cord injury walking with different un-powered exoskeletons:A case study[J]. Journal of Rehabilitation Medicine, 2016. 48 (4): 390- 395.
doi: 10.2340/16501977-2065
[1] LI Yinbo, TANG Zihan, JI Linhong, MENG Kuilin, LI Zhibin, GUAN Xinyu. Physical human-robot interface for lower limb exoskeletons to affect internal joint forces[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 544-550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd