NUCLEAR ENERGY AND NEW ENERGY |
|
|
|
|
|
Flow characteristics of free swirling jet with special structures |
HU Yu, GONG Yingli, SUN Xinyu, HUANG Xingliang, QI Haiying |
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract Vortex thermal-intensification was studied by measuring the cold flow characteristics of a tornado-like vortex. The experiments measured the effect of the inlet channel area of a vortex generator on the initial vacuum and velocity distribution with strong swirl. The results show that the air mass flow rate strongly influences the initial vacuum with the vacuum increasing with the mass flow rate. All the velocity components of the tornado-like vortex can be described by semi-empirical vortex models with the velocity distribution varying significantly as the swirl intensity decreases. A strong swirl intensity is found crucial to the formation and maintenance of the hollow-core structure. The occurrence of radial entrainment indicates a significant decrease in the swirl intensity. These observations extend the understanding of the tornado-like vortex related to vortex thermal-intensification and provide important reference for exploring these mechanisms in the future.
|
Keywords
vortex thermal-intensification
tornado-like vortex
vortex generator
velocity distribution
vortex model
|
Issue Date: 03 March 2020
|
|
|
[1] 高歌. 内部报告[R]. 北京:航空发动机气动热力国家重点实验室, 2009.GAO G. Internal report[R]. Beijing:National Key Laboratory of Aeronautical Engine Pneumatic Heat, BUAA, 2009. (in Chinese) [2] 李志强. 内部报告[R]. 北京:航空发动机气动热力国家重点实验室, 2009.LI Z Q. Internal report[R]. Beijing:National Key Laboratory of Aeronautical Engine Pneumatic Heat, BUAA, 2009. (in Chinese) [3] 张兆顺, 崔桂香. 流体力学[M]. 北京:清华大学出版社, 2006.ZHANG Z S, CUI G X. Fluid mechanics[M]. Beijing:Tsinghua University Press, 2006. (in Chinese) [4] 祁海鹰, 黄兴亮, 胡羽, 等.龙卷旋涡的真空与能量分离特性研究[J]. 清华大学学报(自然科学版), 2016, 56(8):893-900, 907.QI H Y, HUANG X L, HU Y, et al. Vacuum and energy seperation characteristics of tornado-like vortices[J]. Journal of Tsinghua University (Science and Technology, 2016, 56(8):893-900, 907. (in Chinese) [5] 李科, 胡羽, 黄兴亮, 等. 龙卷旋涡的大涡模拟及能量分离机理研究[J]. 燃烧科学与技术, 2016, 22(3):198-205.LI K, HU Y, HUANG X L, et al. Studies on tornado-like vortex flow and its mechanism of energy separation by large-eddy simulation[J]. Journal of Combustion Science and Technology, 2016, 22(3):198-205.(in Chinese) [6] ZHANG R, ZHAO Z, DU Q. An experimental study on the flow characteristic of a swirling liquid jet in its near field[C]//Proceedings of 2011 Intetnational Conference of Electrical and Control Engineering, ICECE 2011. Yichang, China, 2011. 1969-1972. [7] LILLEY D G. Swirl flows in combustion:A review[J]. AIAA Journal, 1977, 15:1063-1078. [8] SYRED N, BEER J M. Combustion in swirling flows:A review[J]. Combustion and Flame, 1974, 23:143-201. [9] RENARD P-H, THEVENIN D, ROLON J C, et al. Dynamics of flame/vortex interactions[J]. Progress in Energy and Combustion Science, 2000, 26:225-282. [10] AHMED S F, BALACHANDRAN R, MARCHIONE T, et al. Spark ignition of turbulent nonpremixed bluff-body flames[J]. Combustion and Flame, 2007, 151:366-385. [11] PALIES P, DUROX D, SCHULLER T, et al. Experimental study on the effect of swirler geometry and swirl number on flame describing functions[J]. Combustion Science and Technology, 2011, 183:704-717. [12] CHIGIER N A, CHERVINSKY A. Experimental investigation of swirling vortex motion in jets. Journal of Applied Mechanics, 1967, 34(2):443-451. DOI:10.1115/1.3607703. [13] BURGERS J M. A mathematical model illustrating the theory of turbulence[J]. Advances in Applied Mechanics, 1948, 1:171-199. [14] ROTT N. On the viscous core of a line vortex II[J]. Zeitschrift für Angewandte Mathematik und Physik, 1959, 10(1):73-81. [15] SULLIVAN R D. A two-cell vortex solution of the Navier-Stokes equations. Journal of the Aero/Space Sciences, 2012:767-768. DOI:10.2514/8.8303. [16] LONG R R. A vortex in an infinite viscous fluid[J]. Journal of Fluid Mechanics, 1961, 11:611-624. [17] XU Z, HANGAN H. An inviscid solution for modeling of tornadolike vortices[J]. Journal of Applied Mechanics, 2009, 76:031011. [18] LUCCA-NEGRO O, O'DOHERTY T. Vortex breakdown:A review[J]. Progress in Energy and Combustion Science, 2001, 27:431-481. [19] KIDA S, GOTO S, MAKIHARA T. Low-pressure vortex analysis in turbulence:Life, structure, and dynamical role of vortices[R]. Tokyo, Japan:Theory and Computer Simulation Center, National Institute for Fusion Science, 2002. [20] BERNARD P S, THOMAS J M, HANDLER R A. Vortex dynamics and the production of reynolds stress[J]. Journal of Fluid Mechanics Digital Archive, 1993, 253:385-419. [21] AL-ABDELI Y M, MASRI A R. Review of laboratory swirl burners and experiments for model validation[J]. Experimental Thermal and Fluid Science, 2015, 69:178-196. [22] 祁海鹰. "有隙"锥形旋流器燃烧稳定性的实验研究[D]. 北京:清华大学, 1985.QI H Y. Experimental study on combustion stability of gaped conical-swirler[D]. Beijing:Tsinghua University, 1985.(in Chinese) [23] ZHU X, LI R, LI D, et al. Experimental study and RANS calculation on velocity and temperature of a kerosene-fueled swirl laboratory combustor with and without centerbody air injection[J]. International Journal of Heat and Mass Transfer, 2015, 89:964-976. [24] TERHAAR S, REICHEL T G, SCHRÖDINGER C, et al. Vortex breakdown types and global modes in swirling combustor flows with axial injection[J]. Journal of Propulsion and Power, 2015, 31:219-229. [25] SPENCER A, MCGUIRK J J, MIDGLEY K. Vortex breakdown in swirling fuel injector flows[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130:021503. [26] LI Y, LI R, LI D, et al. Combustion characteristics of a slotted swirl combustor:An experimental test and numerical validation[J]. International Communications in Heat and Mass Transfer, 2015, 66:140-147. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|