Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2020, Vol. 60 Issue (11) : 927-933     DOI: 10.16511/j.cnki.qhdxxb.2020.22.014
MECHANICAL ENGINEERING |
Energy management of servo press lines based on flywheel speed adaptive planning
PENG Fazhong1, ZHANG Peng2, WANG Liping1, SHAO Zhufeng1, YANG Di1, YANG Kuai1
1. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Jier Machine-Tool Group Co., Ltd., Jinan 250022, China
Download: PDF(3523 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The main drive motors in large servo press lines often draw megawatts of power with frequent acceleration and deceleration of the slider, which strongly affects the power grid and power usage. Thus, effective energy management is indispensable to ensure smooth, efficient operation of large servo press lines. This paper studies how to improve the energy management of large servo press lines using flywheel energy storage. A gradient project algorithm and B-spline speed planning are used to develop a half-period flywheel speed adaptive planning algorithm. This algorithm better optimizes the power usage by introducing an approximately sinusoidal disturbance which avoids sudden changes in the flywheel speed. Finally, the servo press line model is analyzed theoretically in Simulink. The simulation results show that the half-period adaptive flywheel speed planning algorithm significantly improves the incoming line power and bus voltage fluctuations as an effective method for energy management of large servo press lines.
Keywords servo press      energy management      flywheel energy storage      adaptive     
Issue Date: 31 August 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Fazhong
ZHANG Peng
WANG Liping
SHAO Zhufeng
YANG Di
YANG Kuai
Cite this article:   
PENG Fazhong,ZHANG Peng,WANG Liping, et al. Energy management of servo press lines based on flywheel speed adaptive planning[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 927-933.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.22.014     OR     http://jst.tsinghuajournals.com/EN/Y2020/V60/I11/927
  
  
  
  
  
  
  
  
  
[1] HALICIOGLU R, CANAN DULGER L, TOLGA BOZDANA A. Modeling, design, and implementation of a servo press for metal-forming application[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8):2689-2700.
[2] 戴绍祥, 孙立岩. 伺服冲压自动化生产工艺及装置浅析[J]. 锻压装备与制造技术, 2018, 53(1):15-18. DAI S X, SUN L Y. Analysis of automatic production process and device for servo stamping[J]. China Metalforming Equipment and Manufacturing Technology, 2018, 53(1):15-18. (in Chinese)
[3] 常超, 史阳. 基于超级电容储能的直流风电机组协调控制[J]. 现代电力, 2017, 34(6):65-70. CHANG C, SHI Y. Coordinated control of DC wind power generator based on super capacitor energy storage[J]. Modern Electric Power, 2017, 34(6):65-70. (in Chinese)
[4] 汤凡, 刘天琪, 李兴源. 用于风电场功率控制的飞轮储能系统仿真研究[J]. 电网与清洁能源, 2010, 26(2):63-68. TANG F, LIU T Q, LI X Y. Simulation of flywheel energy storage system for power control in wind farms[J]. Power System and Clean Energy, 2010, 26(2):63-68. (in Chinese)
[5] 王业斌. 电动汽车电池能量管理策略研究[J]. 汽车文摘, 2019(5):58-62. WANG Y B. Research on battery energy management strategies for electric vehicles[J]. Automotive Digest, 2019(5):58-62. (in Chinese)
[6] 周晓东, 郭为忠. 伺服压力机能量管理系统的研究[J]. 传动技术, 2018, 32(4):31-36. ZHOU X D, GUO W Z. Research on energy management system of servo press[J]. Drive System Technique, 2018, 32(4):31-36. (in Chinese)
[7] 黄宇淇, 姜新建, 邱阿瑞. 飞轮储能能量回馈控制方法[J]. 清华大学学报(自然科学版), 2008, 48(7):1085-1088. HUANG Y Q, JIANG X J, QIU A R. Energy feedback control for flywheel energy storage system[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(7):1085-1088. (in Chinese)
[8] 李伟. 风力发电系统中飞轮储能装置的控制分析[J]. 中国设备工程, 2018(20):103-104. LI W. Control analysis of flywheel energy storage device in wind power generation system[J]. China Plant Engineering, 2018(20):103-104. (in Chinese)
[9] 梁晓. 非最小相位系统的最小方差自适应控制[J]. 兵工自动化, 2004(6):54-55. LIANG X. Adaptive control of minimum square error for non-minimum phase system[J]. Ordnance Industry Automation, 2004(6):54-55. (in Chinese)
[10] 任宏彬, 王丽梅. 基于极点配置的数控机床磁悬浮系统自适应同步控制[J]. 电气技术, 2010(2):16-19. REN H B, WANG L M. Adaptive synchronous control for suspension system of numerically controlled machine tool based on pole-placement[J]. Electrical Engineering, 2010(2):16-19. (in Chinese)
[11] 刘丽影, 李雪松, 张建成. 飞轮储能系统发电运行控制技术的研究[J]. 华北电力技术, 2007(9):8-10. LIU L Y, LI X S, ZHANG J C. Research on flywheel energy storage system on generator controlling technology[J]. North China Electric Power, 2007(9):8-10. (in Chinese)
[12] 王彬彬, 张飞, 王京. 基于递推最小二乘法的无模型自适应厚度控制[J]. 冶金自动化, 2015, 39(3):34-38. WANG B B, ZHANG F, WANG J. Model-free adaptive thickness control based on recursive least squares[J]. Metallurgical Industry Automation, 2015, 39(3):34-38. (in Chinese)
[13] 宫立达, 李智敏. 基于单神经元自适应PID的普通车床智能控制研究[J]. 机电产品开发与创新, 2017, 30(3):108-109. GONG L D, LI Z M. Ordinary lathe intelligent control research based on single neuron adaptive PID[J]. Development and Innovation of Machinery and Electrical Products, 2017, 30(3):108-109. (in Chinese)
[14] 陈运华, 高凤岐, 王广龙. 基于自适应模糊算法的无刷直流电机控制系统研究[J]. 微电机, 2012, 45(12):31-35. CHEN Y H, GAO F Q, WANG G L. Study on control cystem of crushless DC motor based on adaptive fuzzy algorithm[J]. Micromotors, 2012, 45(12):31-35. (in Chinese)
[15] 侯忠生, 于百胜, 黄文虎. 非线性系统参数估计的投影算法[J]. 哈尔滨工业大学学报, 2000(3):25-28. HOU Z S, YU B S, HUANG W H. The projection algorithm for estimation of nonlinear system parameter[J]. Journal of Harbin Institute of Technology, 2000(3):25-28. (in Chinese)
[1] WANG Zhenyu, WANG Lei. Improved monarch butterfly optimization algorithm and its engineering application[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 668-678.
[2] LEI Xupeng, YANG Jian, XU Menghuai, ZHU Jiang, GONG Min. Adaptive damping for a generalized unitary approximate message passing algorithm[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 700-711.
[3] LI Gen, ZHAI Wei, HUANG Haibo, REN Jiaolong, Wang Dengzhong, WU Lan. Merging decision behavior model based on multivariate adaptive regression splines[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 55-62.
[4] FU Wen, WEN Hao, HUANG Junhui, SUN Binxuan, CHEN Jiajie, CHEN Wu, FENG Yue, DUAN Xingguang. Adaptive sliding mode control of underwater manipulator based on nonlinear dynamics model compensation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1068-1077.
[5] CHEN Shuqin, LI Tiemin. Assembly of spacecraft components based on adaptive compliance control[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1808-1819.
[6] ZHAO Juying, XU Yiren, ZHU Tianyi, QI Zhihao, LI Yongjian. Numerical and experimental research on an adaptive labyrinth seal[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 463-469.
[7] YANG Yaqin, XU Peng, WU Xishui. Adaptive modeling method based on the Fast-MCD to analyze railway track irregularity deterioration[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 516-522.
[8] LI Hui, SONG Liqiang, YANG Qingge, LI Qingwei. Analyses and improvement method of sliding failures and structural damage of the triangular reflector elements in FAST[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1823-1832.
[9] SUN Enxin, YIN Yuming, XIN Zhe, LI Shengbo, HE Jugang, KONG Zhouwei, LIU Xiupeng. Adaptive joint estimates of vehicle mass and road grades for small acceleration driving scenarios[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 125-132.
[10] WANG Jingyao, ZHENG Huaqing, GUO Jinghua, LUO Yugong. Distributed adaptive robust platoon control of intelligent electric vehicles with communication delays[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 889-897.
[11] Fazhong PENG,Chuanying WANG,Henghui CHAI,Zhufeng SHAO,Shuaiqi WANG,Bowen WANG. Lightweight slider design for a servo press based on its layered structure[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(12): 1016-1022.
[12] WEI Kunpeng, DAI Xingjian, SHAO Zongyi. Measurements and finite element analyses of the bending stiffness of laminated carbon fiber bellows[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 587-592.
[13] SUN Bowen, ZHU Zhiming, GUO Jichang, ZHANG Tianyi. Detection algorithms and optimization of image processing for visual sensors using combined laser structured light[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 445-452.
[14] TAO Jiawei, ZHANG Tao. Coupled control of relative position and attitude for spacecraft proximity operations with input constraints and parameter uncertainties[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 311-316.
[15] CAI Yuan, LUO Wei, XIANG Dong. Routing algorithm based on a column-partition turn model for a network-on-chip[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(12): 1051-1058.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd