Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (1) : 1-10     DOI: 10.16511/j.cnki.qhdxxb.2020.22.020
Special Section: Automotive Component |
Dynamic characteristics of a three-speed uninterrupted powertrain AMT
Fei LI1,2,Jian SONG1,*(),Shengnan FANG1,Haijun SONG1,Truong Sinh NGUYEN1
1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
2. Department of Mechanized Infantry, Shijiazhuang School of Army Infantry Academy, Shijiazhuang 050083, China
Download: PDF(7456 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study analyzes the dynamic characteristics of a three-speed uninterrupted powertrain automatic mechanical transmission (AMT) for an electric bus. The AMT structure reduces the power interruption during shifting. A Lagrange equation is developed for the three-speed uninterrupted powertrain AMT that includes the target vehicle performance characteristics. The model is solved in MATLAB/Simulink to compare the performance characteristics of the target vehicle with this three-speed uninterrupted powertrain AMT and without a transmission with simulations of the entire acceleration and deceleration ranges of the target vehicle. The model predicts the clutch and brake torque curves during shifting and predicts the drive motor input torque and final output torque. The dynamic equations are also used to verify the feasibility of power recovery during shifting. The results show that the three-speed uninterrupted powertrain AMT improves the vehicle dynamics of electric buses and maintains power during shifting.

Keywords pure electric bus      uninterrupted powertrain      three-speed automatic mechanical transmission (AMT)      dynamic characteristics     
Corresponding Authors: Jian SONG     E-mail: daesj@tsinghua.edu.cn
Issue Date: 26 November 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fei LI
Jian SONG
Shengnan FANG
Haijun SONG
Truong Sinh NGUYEN
Cite this article:   
Fei LI,Jian SONG,Shengnan FANG, et al. Dynamic characteristics of a three-speed uninterrupted powertrain AMT[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 1-10.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.22.020     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I1/1
  
10.16511/j.cnki.qhdxxb.2020.22.020.T001

换挡执行机构工作状态

挡位 制动器 二挡离合器 三挡离合器
一挡 接合 分离 分离
二挡 分离 接合 分离
三挡 分离 分离 接合
  
  
10.16511/j.cnki.qhdxxb.2020.22.020.T002

目标车型技术参数[15]

传动系统效率 0.95
轮胎动态滚动半径/m 0.506
滚动阻力系数 0.018
风阻系数 0.7
迎风面积/m2 7.33
(长/mm)×(宽/mm)×(高/mm) 11 985×2 500×3 250
质心高度/mm 750
试验质量/kg 15 000
满载质量/kg 17 500
  
10.16511/j.cnki.qhdxxb.2020.22.020.T003

目标车型驱动电机参数

额定转矩/(N·m) 880
峰值转矩/(N·m) 1 880
额定功率/kW 120
峰值功率/kW 150
额定转速/(r·min-1) 1 300
峰值转速/(r·min-1) 3 000
  
  
  
  
10.16511/j.cnki.qhdxxb.2020.22.020.T004

原厂主减速器和动力保持型三挡AMT的参数对比

原厂主减速器 动力保持型三挡AMT
主减速比 挡位 变速器传动比 主减速比
一挡 2.745 1
6.166 二挡 1.7 4.133
三挡 1
           
10.16511/j.cnki.qhdxxb.2020.22.020.T005

安装动力保持型三挡AMT前后动力性指标对比

最大爬坡度/% 最高车速/(km·h-1) 0~50 km/h的加速时间/s
未安装变速器 13 92 15
安装三挡AMT 24 100 13
改善比例/% 85 8.7 13
  
10.16511/j.cnki.qhdxxb.2020.22.020.T006

动力保持型三挡AMT换挡点

挡位切换 升挡点/(km·h-1) 降挡点/(km·h-1)
一挡、二挡 30 25
二挡、三挡 60 55
           
1 宋健,李飞,李锐,等.一种复合轮系动力保持型三挡自动变速器: ZL201510228009.2[P]. 2015-05-07.
1 SONG J, LI F, LI R, et al. Three-speed uninterrupted powertrain automatic mechanical transmission based on composite wheel train: ZL201510228009.2[P]. 2015-05-07. (in Chinese)
3 周晶晶.纯电动汽车两挡自动变速器试验与仿真[D].长沙:湖南大学, 2014.
3 ZHOU J J. Gearshift dynamics simulation in two-speed AMT of pure electric vehicle[D]. Changsha: Hunan University, 2014. (in Chinese)
4 吉毅.纯电动汽车用AMT参数设计及换挡控制策略优化[D].重庆:重庆大学, 2014.
4 JI Y. Parameter design and shifting control strategy optimization of AMT for pure electric vehicle[D]. Chongqing: Chongqing University, 2014. (in Chinese)
5 朱虹燃.纯电动汽车两挡自动变速器的研究开发[D].青岛:青岛大学, 2014.
5 ZHU H R. Design of two-speed AMT for pure electric vehicle[D]. Qingdao: Qingdao University, 2014. (in Chinese)
6 LIANG Q , GAO B Z , CHEN H . Gear shifting control for pure electric vehicle with inverse-AMT[J]. Applied Mechanics and Materials, 2012. 190-191, 1286- 1289.
doi: 10.4028/www.scientific.net/AMM.190-191.1286
7 FANG S N , SONG J , SONG H J , et al. Design and control of a novel two-speed uninterrupted mechanical transmission for electric vehicles[J]. Mechanical Systems and Signal Processing, 2016. 75, 473- 493.
doi: 10.1016/j.ymssp.2015.07.006
9 孙少华.纯电动客车机械式自动变速器换挡综合控制技术研究[D].长春:吉林大学, 2014.
9 SUN S H. Research on shift integrated control technology for automated manual transmission in pure electric bus[D]. Changchun: Jilin University, 2014. (in Chinese)
10 XI J Q, XIONG G M, ZHANG Y. Application of automatic manual transmission technology in pure electric bus[C]//Proceedings of 2008 IEEE Vehicle Power and Propulsion Conference. Harbin, China, 2008.
11 MOUSAVI M S R, PAKNIYAT A, BOULET B. Dynamic modeling and controller design for a seamless two-speed transmission for electric vehicles[C]//Proceedings of 2014 IEEE Conference on Control Applications. Juan Les Antibes, France, 2014: 635-640.
12 SORNIOTTI A, BOSCOLO M, TURNER A, et al. Optimization of a multi-speed electric axle as a function of the electric motor properties[C]//Proceedings of 2010 IEEE Vehicle Power and Propulsion Conference. Lille, France, 2010: 1-6.
13 HONG S , SON H , LEE S , et al. Shift control of a dry-type two-speed dual-clutch transmission for an electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2016. 230 (3): 308- 321.
doi: 10.1177/0954407015585686
14 GUO L L , GAO B Z , CHEN H . Online shift schedule optimization of 2-speed electric vehicle using moving horizon strategy[J]. IEEE/ASME Transactions on Mechatronics, 2016. 21 (6): 2858- 2869.
doi: 10.1109/TMECH.2016.2586503
17 宋勇道.基于两档双离合器自动变速器的纯电动汽车驱动与换档控制技术研究[D].长春:吉林大学, 2013.
17 SONG Y D. Research on drive and shift control technology for electric vehicle with two-speed dual clutch transmission[D]. Changchun: Jilin University, 2013. (in Chinese)
[1] FENG Rui, LIU Yu, ZHANG Zhang, HE Qingsong, WU Zhuo, TENG Haishan, JIA He. Numerical study on the aerodynamics of a rocket fairing half in the continuum regime of the reentry process[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 414-422.
[2] ZHANG Qingsong, JIA Shan, CHEN Jinbao, XU Yingshan, SHE Zhiyong, CAI Chengzhi, PAN Yihua. Configuration design and topology optimization of a single wing for the hybrid unmanned aerial vehicle[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 423-432.
[3] ZHAO Tong, GUO Junjie, LÜ Yuhong. Nonlinear dynamic characteristics of bolted joints for various pretension forces[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(9): 772-779.
[4] YAO Yina, LI Cong, TAO Zhenxiang, YANG Rui. Experimental study of the dynamic characteristics of an oblique impact of a water droplet[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(2): 129-134.
[5] Yan DENG,Chao XING,Rong ZHANG,Bin ZHOU. Rapid testing of the dynamic characteristics of MEMS gyroscope chips[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 811-814.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd