Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (1) : 11-20     DOI: 10.16511/j.cnki.qhdxxb.2020.22.021
Special Section: Automotive Component |
Three-dimensional FSI-FE simulation of the damping characteristics of a twin gas-chamber hydraulic damper
Wenxue XU,Zhenhua LÜ*()
School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
Download: PDF(17070 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

A three-dimensional fluid-structure interaction (FSI) finite element model of a twin gas-chamber hydraulic damper was used to study the high-speed damping characteristics of the damper. The numerical results agreed well with experimental data. The damping characteristics were analyzed for various initial gas chamber volumes and initial pressures with comparisons with a single gas-chamber hydraulic damper. A single pressurized gas sub-chamber in the compression chamber of a monotube hydraulic damper results in more oil cavitation during the compression stroke. The twin gas-chamber hydraulic damper overcomes this problem but still has delayed reverse damping in both the compression and extension strokes. This problem can be reduced by using smaller gas chambers with higher initial gas pressures. The time delay ratio of the damping force reverse increases with increasing piston vibration frequency. The damping force reverse delay ratio in the compression stroke decreases with increasing piston vibration frequency (2.5~15 Hz) for the same vibration displacement, but this ratio in the extension stroke first increases (2.5~10 Hz) and then decreases (10~15 Hz) with increasing frequency. These characteristics are important when designing twin gas-chamber hydraulic dampers.

Keywords twin gas-chamber hydraulic damper      fluid-structure interaction      finite-element simulation      damping characteristics distortion      gas chamber parameter matching     
Corresponding Authors: Zhenhua LÜ     E-mail: lvzh@tsinghua.edu.cn
Issue Date: 26 November 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenxue XU
Zhenhua LÜ
Cite this article:   
Wenxue XU,Zhenhua LÜ. Three-dimensional FSI-FE simulation of the damping characteristics of a twin gas-chamber hydraulic damper[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 11-20.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.22.021     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I1/11
  
10.16511/j.cnki.qhdxxb.2020.22.021.T001

材料参数

固体(铝合金) 固体(钢) 油液 气体
参数 参数 参数 参数
密度/(kg·m-3) 2 700 密度/(kg·m-3) 7 800 密度/(kg·m-3) 832 密度/(kg·m-3) 1.13
弹性模量/GPa 69 弹性模量/GPa 210 动力黏度/(Pa·s) 0.017 定压比热容/(J·kg-1·K-1) 1 042
Poisson比 0.33 Poisson比 0.3 体积弹性模量/MPa 1 500 定容比热容/(J·kg-1·K-1) 745
  
  
  
  
  
10.16511/j.cnki.qhdxxb.2020.22.021.T002

实验测试工况

工况 v/(m·s-1) A/mm f/Hz p0/MPa
1 0.5 40 2 2.4
2 1.0 40 4 2.4
3 1.5 40 6 2.9
4 2.0 40 8 3.7

  注:v为活塞速度幅值,A为活塞位移幅值,f为活塞振动频率,p0为气室初始压强。

  
  
  
  
10.16511/j.cnki.qhdxxb.2020.22.021.T003

参数配置方案

方案 V1/L V2/L p0/MPa
1 0.038 0.019 1.0
2 0.055 0.027 1.0
3 0.189 0.094 1.0
4 0.027 0.055 1.0
5 0.055 0.027 0.5
6 0.055 0.027 2.0
7 0.082 0 1.0

  注:V1代表压缩室内气室初始容积,V2代表伸张压缩室内气室初始容积。

  
  
10.16511/j.cnki.qhdxxb.2020.22.021.T004

双气室式液阻减振器阻尼力反向迟滞特性

工况 Fe/kN Fmax/kN ηF te/s ηt μd/(kN·s-1)
伸张行程阻尼力反向迟滞 1 3.802 25.476 0.149 0.003 7 0.074 1 014
2 4.522 25.459 0.178 0.004 8 0.096 942.1
3 7.779 25.144 0.309 0.010 2 0.204 758.9
4 6.831 25.503 0.268 0.007 4 0.148 923.1
5 5.280 25.540 0.207 0.005 8 0.116 734.0
6 4.091 25.254 0.162 0.003 4 0.068 1 203
压缩行程阻尼力反向迟滞 1 -1.231 -11.263 0.109 0.001 9 0.038 647.9
2 -1.729 -11.202 0.154 0.002 9 0.058 596.2
3 -4.330 -8.823 0.491 0.009 4 0.188 458.2
4 -1.416 -11.422 0.124 0.002 3 0.046 615.6
5 -2.257 -11.039 0.204 0.004 8 0.096 470.2
6 -1.446 -11.288 0.128 0.002 1 0.042 688.6
                 
10.16511/j.cnki.qhdxxb.2020.22.021.T005

仿真分析工况

工况 v A f
m·s-1 mm Hz
1 0.5 32 2.5
2 1.0 32 5
3 1.5 32 7.5
4 2.0 32 10
5 2.5 32 12.5
6 3.0 32 15
7 2.0 16 20
8 2.0 48 6.67
9 2.0 64 5
     
10.16511/j.cnki.qhdxxb.2020.22.021.T006

双气室式液阻减振器阻尼力反向迟滞特性

工况 伸张行程阻尼力反向迟滞 压缩行程阻尼力反向迟滞
ηF ηt ηF ηt
1 0.099 0.032 0.248 0.052
2 0.165 0.068 0.192 0.054
3 0.177 0.085 0.189 0.055
4 0.178 0.096 0.154 0.058
5 0.174 0.101 0.136 0.061
6 0.169 0.105 0.092 0.060
7 0.237 0.142 0.237 0.102
8 0.149 0.076 0.123 0.041
9 0.132 0.065 0.104 0.035
  
1 LUO F , ZHANG X L . A review of aeration and cavitation phenomena in the hydraulic shock absorber[J]. Applied Mechanics and Materials, 2014. 536-537, 1369- 1373.
doi: 10.4028/www.scientific.net/AMM.536-537.1369
2 LANG H H. A study of the characteristics of automotive hydraulic dampers at high stroking frequencies[D]. Ann Arbor, USA: University of Michigan, 1977.
3 ALONSO M , COMAS á . Thermal model of a twin-tube cavitating shock absorber[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2008. 222 (11): 1955- 1964.
doi: 10.1243/09544070JAUTO829
4 CASTELLANI F , SCAPPATICCI L , BARTOLINI N , et al. Numerical and experimental investigation of a monotube hydraulic shock absorber[J]. Archive of Applied Mechanics, 2017. 87 (12): 1929- 1946.
doi: 10.1007/s00419-017-1302-5
5 SKRICKIJ V , SAVITSKI D , IVANOV V , et al. Investigation of cavitation process in monotube shock absorber[J]. International Journal of Automotive Technology, 2018. 19 (5): 801- 810.
doi: 10.1007/s12239-018-0077-1
8 THAREHALLI MATA G , KUMAR H , MAHALINGAM A . Performance analysis of a semi-active suspension system using coupled CFD-FEA based non-parametric modeling of low capacity shear mode monotube MR damper[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2019. 233 (5): 1214- 1231.
doi: 10.1177/0954407018765899
9 CZOP P , GNI?KA J . Reducing aeration and cavitation effect in shock absorbers using fluid-structure interaction simulation[J]. Computer Assisted Methods in Engineering and Science, 2017. 23 (4): 171- 189.
12 BATHE K J . Finite element procedures[M]. 2nd ed. Watertown, USA: Klaus-Jurgen Bathe, 2014.
[1] YANG Linqing, QIN Benke, BO Hanliang. Energy analysis method of junction coupling[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 840-848.
[2] ZHANG Zhang, WU Jie, ZHAO Miao, WANG Qi, LIU Yu. Aeroelastic dynamic response of the inflatable space reentry aeroshell[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 394-405.
[3] XIANG Chong, LONG Weiyang, GUO Fei, ZHANG Xinyi, JIANG Jie. Fluid-structure interaction simulation of sealing shield main drive seal properties[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 71-77.
[4] LÜ Zhenhua, LI Ming. Simulations of the unsteady fluid-structure coupling characteristics of a conical orifice valve[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 35-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd