Mechanical Engineering |
|
|
|
|
|
X-axis thermal error modeling and compensation for an NL201HA CNC horizontal lathe |
Yong LUO1,2,Zhufeng SHAO1,*( ),Liping WANG1,2,Jiahao QIU1,Zhejin SHENG1 |
1. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China 2. Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
|
|
Abstract The influence of thermal error on machine tool processing accuracy was analyzed for a computer numerical control (CNC) horizontal lathe. Thermal error data was recorded using an infrared thermal imager, a displacement sensor and a temperature sensor to establish a thermal error model and a thermal error compensation system. Infrared thermal images and correlation analyses were used to optimize the locations of key temperature measurement points. Then, a linear regression thermal error model was developed for the main lathe axis in the radial direction (X direction). Tests show that the linear regression model is robust and suitable for thermal error modelling of the lathe. The linear regression model was then used to develop a thermal error compensation system based on a Siemens 828D CNC system and an S7-300PLC (programmable logic controller). Tests show that the radial thermal error of the shaft is reduced from the original 10 μm to less than 5 μm with the accuracy improved by more than 50%.
|
Keywords
computer numerical control (CNC) horizontal lathe
temperature measuring point
thermal error modeling
thermal error compensation
|
Corresponding Authors:
Zhufeng SHAO
E-mail: shaozf@tsinghua.edu.cn
|
Issue Date: 26 November 2020
|
|
|
1 |
BRYAN J . International status of thermal error research (1990)[J]. CIRP Annals, 1990. 39 (2): 645- 656.
doi: 10.1016/S0007-8506(07)63001-7
|
2 |
RAMESH R , MANNAN M A , POO A N . Error compensation in machine tools-A review:Part Ⅱ:Thermal errors[J]. International Journal of Machine Tools and Manufacture, 2000. 40 (9): 1257- 1284.
doi: 10.1016/S0890-6955(00)00010-9
|
3 |
AHN K G , CHO D W . In-process modelling and estimation of thermally induced errors of a machine tool during cutting[J]. The International Journal of Advanced Manufacturing Technology, 1999. 15 (4): 299- 304.
doi: 10.1007/s001700050070
|
4 |
LI Y , ZHAO W H , LAN S H , et al. A review on spindle thermal error compensation in machine tools[J]. International Journal of Machine Tools and Manufacture, 2015. 95, 20- 38.
doi: 10.1016/j.ijmachtools.2015.04.008
|
6 |
CAMERA A , FAVARATO M , MILITANO L , et al. Analysis of the thermal behavior of a machine tool table using the finite element method[J]. Annals of the CIRP, 1976. 25 (1): 297- 300.
|
7 |
SPUR G , HOFFMANN E , PALUNCIC Z , et al. Thermal behaviour optimization of machine tools[J]. CIRP Annals, 1988. 37 (1): 401- 405.
doi: 10.1016/S0007-8506(07)61664-3
|
8 |
LIU T , GAO W G , ZHANG D W , et al. Analytical modeling for thermal errors of motorized spindle unit[J]. International Journal of Machine Tools and Manufacture, 2017. 112, 53- 70.
doi: 10.1016/j.ijmachtools.2016.09.008
|
9 |
LO C H , YUAN J X , NI J . Optimal temperature variable selection by grouping approach for thermal error modeling and compensation[J]. International Journal of Machine Tools and Manufacture, 1999. 39 (9): 1383- 1396.
doi: 10.1016/S0890-6955(99)00009-7
|
10 |
LI D X , FENG P F , ZHANG J F , et al. Calculation method of convective heat transfer coefficients for thermal simulation of a spindle system based on RBF neural network[J]. The International Journal of Advanced Manufacturing Technology, 2014. 70 (5-8): 1445- 1454.
doi: 10.1007/s00170-013-5386-y
|
11 |
RAMESH R , MANNAN M A , POO A N . Support vector machines model for classification of thermal error in machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2002. 20 (2): 114- 120.
doi: 10.1007/s001700200132
|
12 |
LI S H , ZHANG Y Q , ZHANG G X . A study of pre-compensation for thermal errors of NC machine tools[J]. International Journal of Machine Tools and Manufacture, 1997. 37 (12): 1715- 1719.
doi: 10.1016/S0890-6955(97)00032-1
|
13 |
YANG H , NI J . Dynamic modeling for machine tool thermal error compensation[J]. Journal of Manufacturing Science and Engineering, 2003. 125 (2): 245- 254.
doi: 10.1115/1.1557296
|
15 |
ZHANG Y , YANG J G , JIANG H . Machine tool thermal error modeling and prediction by grey neural network[J]. The International Journal of Advanced Manufacturing Technology, 2012. 59 (9-12): 1065- 1072.
doi: 10.1007/s00170-011-3564-3
|
16 |
崔岗卫.重型数控落地铣镗床误差建模及补偿技术研究[D].哈尔滨:哈尔滨工业大学, 2012.
|
16 |
CUI G W. Research on error modeling and compensation for heavy-duty CNC floor-typed boring and milling machine tool[D]. Harbin: Harbin University of Technology, 2012. (in Chinese)
|
17 |
LI Z H , YANG J G , FAN K G , et al. Integrated geometric and thermal error modeling and compensation for vertical machining centers[J]. The International Journal of Advanced Manufacturing Technology, 2015. 76 (5-8): 1139- 1150.
doi: 10.1007/s00170-014-6336-z
|
18 |
ZHANG D X, LIU X L, SHI H M, et al. Identification of position of key thermal susceptible points for thermal error compensation of machine tool by neural network[C]//Proceedings of SPIE International Conference on Intelligent Manufacturing. Wuhan, China, 1995: 468-472.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|