Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2020, Vol. 60 Issue (6) : 456-463     DOI: 10.16511/j.cnki.qhdxxb.2020.25.011
SPECIAL SECTION: TRUSTED COMPUTING AND INFORMATION SECURITY |
Machine learning algorithm for a homomorphic encrypted data set
JIA Chunfu1,2, WANG Yafei1,2, CHEN Yang1, SUN Mengjie1, GE Fengyi1
1. College of Cyberspace Security, Nankai University, Tianjin 300350, China;
2. Tianjin Key Laboratory of Network and Data Security Technology, Tianjin 300350, China
Download: PDF(1953 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The continuous development of big data requires that data be stored and analyzed in the cloud, which leads to privacy leakage of sensitive data. This paper presents a machine learning classification algorithm for homomorphic encrypted data sets. Firstly, preprocess the data set to meet the requirements of homomofphic encryption. The encrypted data set is then sorted by protocol and classified. Finally, the classification results are obtained. The client can then upload encrypted data and ensure that the server will not get any sensitive information. A homomorphic encryption algorithm is used to ensure that the server can still perform required operations on the ciphertext. Tests show that this scheme can provide accurate, useful results with Bayes, hyperplane and decision tree classifiers.
Keywords privacy-preserving      homomorphic encryption      classification algorithm      operations on encrypted data     
Issue Date: 27 April 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIA Chunfu
WANG Yafei
CHEN Yang
SUN Mengjie
GE Fengyi
Cite this article:   
JIA Chunfu,WANG Yafei,CHEN Yang, et al. Machine learning algorithm for a homomorphic encrypted data set[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 456-463.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.25.011     OR     http://jst.tsinghuajournals.com/EN/Y2020/V60/I6/456
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] BOST R, ADA POPA R, TU S, et al. Machine learning classification over encrypted data[C]//22nd Annual Network and Distributed System Security Symposium. San Diego, USA:MIT CSAIL, 2015:186-219.
[2] BOST R, POPA R A, TU S, et al. Machine learning classification over encrypted data[C]//22nd Annual Network and Distributed System Security Symposium. San Diego, USA:MIT CSAIL, 2015:4325.
[3] BARNI M, FAILLA P, LAZZERETTI R, et al. Privacy-preserving ECG classification with branching programs and neural networks[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(2):452-468.
[4] GRAEPEL T, LAUTER K, NAEHRIG M. ML confidential:Machine learning on encrypted data[M]//KWON T, LEE M K, KWON D. Information Security and Cryptology. Berlin, Germany:Springer, 2012:1-21.
[5] CARPOV S, GAMA N, GEORGIEVA M, et al. Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption[J]. ePrint Archive, 2019:101.
[20] VEUGEN T. Efficient coding for secure computing with additively-homomorphic encrypted data[J]. IACR Cryptology ePrint Archive, 2019:437.
[6] 曹来成, 刘宇飞, 董晓晔, 等. 基于属性加密的用户隐私保护云存储方案[J]. 清华大学学报(自然科学版), 2018, 58(2):150-156. CAO L C, LIU Y F, DONG X Y, et al. User privacy-preserving cloud storage scheme on CP-ABE[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(2):150-156. (in Chinese)
[7] CHEON J H, JEONG J, KI D, et al. Privacy-preserving k-means clustering with multiple data owners[J]. IACR Cryptology ePrint Archive, 2019:466.
[8] SO J, GULER B, AVESTIMEHR A S, et al. CodedPrivateML:A fast and privacy-preserving framework for distributed machine learning[Z]. arXiv:1902.00641, 2019.
[9] KISS Á, NADERPOUR M, LIU J, et al. SoK:Modular and efficient private decision tree evaluation[J]. Proceedings on Privacy Enhancing Technologies, 2019(2):187-208.
[10] BLOM F, BOUMAN N J, SCHOENMAKERS B, et al. Efficient secure ridge regression from randomized Gaussian elimination[Z]. IACR Cryptology ePrint Archive 2019/773, 2019.
[11] 蒋林智, 许春香, 王晓芳, 等. (全)同态加密在基于密文计算模型中的应用[J]. 密码学报, 2017, 4(6):596-610. JIANG L Z, XU C X, WANG X F, et al. Application of (fully) homomorphic encryption for encrypted computing models[J]. Journal of Cryptologic Research, 2017, 4(6):596-610. (in Chinese)
[12] 李增鹏, 马春光, 周红生. 全同态加密研究[J]. 密码学报, 2017, 4(6):561-578. LI Z P, MA C G, ZHOU H S. Overview on fully homomorphic encryption[J]. Journal of Cryptologic Research, 2017, 4(6):561-578. (in Chinese)
[13] ACAR A, AKSU H, ULUAGAC A S, et al. A survey on homomorphic encryption schemes:Theory and implementation[J]. ACM Computing Surveys, 2018, 51(4):79.
[14] BRAKERSKI Z, VAIKUNTANATHAN V. Fully homomorphic encryption from ring-LWE and security for key dependent messages[M]//ROGAWAY P. Advances in Cryptology. Berlin, Germany:Springer, 2011:505-524.
[15] ELGAMAL T. A public key cryptosystem and a signature scheme based on discrete logarithms[M]//Advances in Cryptology. Berlin, Germany:Springer, 1985:10-18.
[16] PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[M]//Advances in Cryptology-EUROCRYPT'99. Berlin, Germany:Springer, 1999:223-238.
[17] GENTRY C. Fully homomorphic encryption using ideal lattices[C]//Proceedings of the 41st Annual ACM Symposium on Theory of Computing. Bethesda, USA:ACM, 2009:169-179.
[18] BRAKERSKI Z, VAIKUNTANATHAN V. Efficient fully homomorphic encryption from (standard) LWE[C]//2011 IEEE 52nd Annual Symposium on Foundations of Computer Science. Palm Springs, USA:IEEE, 2011:97-106.
[19] VAIDYA J, KANTARCIOĞLU M, CLIFTON C. Privacy-preserving naive Bayes classification[J]. The VLDB Journal, 2008, 17(4):879-898.
[20] LAUR S, LIPMAA H, MIELIKÄINEN T. Cryptographically private support vector machines[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA:ACM, 2006:618-624.
[21] BLUM A, DWORK C, MCSHERRY F, et al. Practical privacy:The SuLQ framework[C]//Proceedings of the Twenty-Fourth Symposium on Principles of Database Systems, Baltimore, USA, 2005:128-138.
[22] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[23] VEUGEN T. Comparing encrypted data[EB/OL]. (2011). https://www.researchgate.net/publication/266527434_COMPARING_EnCRYPTED_DATA.
[24] AVIDAN S, BUTMAN M. Efficient methods for privacy preserving face detection[C]//Advances in Neural Information Processing Systems. Cambridge, USA:MIT Press, 2006:57.
[25] BACHE K, LICHMAN M. UCI machine learning repository[EB/OL].[2019-07-26]. https://archive.ics.uci.edu/ml/index.php.
[1] CAO Laicheng, LI Yuntao, WU Rong, GUO Xian, FENG Tao. Multi-key privacy protection decision tree evaluation scheme[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 862-870.
[2] LI Taoshen, LIU Qing, HUANG Ruwei. Multi-user fully homomorphic encryption scheme based on proxy re-encryption for cloud computing[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 143-149.
[3] CAO Laicheng, LIU Yufei, DONG Xiaoye, GUO Xian. User privacy-preserving cloud storage scheme on CP-ABE[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 150-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd