Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2020, Vol. 60 Issue (12) : 985-992     DOI: 10.16511/j.cnki.qhdxxb.2020.25.020
Mechanical Engineering |
Optimization of spraying trajectory based on elliptical double β spraying gun model
Xiaotong HUA,Simin ZHANG,Xingjie LIU,Zhiliang CHEN,Guolei WANG*(),Ken CHEN
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(6849 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Spraying trajectory optimization is important for ensuring high quality coatings because the trajectory directly affects the coating formation. This paper describes a trajectory optimization method for planar spraying. Efficient, high quality planar spraying is realized by solving a complementary spraying gun model. As for NURBS free-form surfaces, artists use different size brushes to create finer features on some objects than on others. This concept of variable size brushes is implemented here by changing the distance from the spray gun to the surface for free-form surfaces. The spraying is further optimized on complex surfaces by varying the spraying speed. Simulations and tests show that the film thickness uniformity is 1.64% worse and the paint utilization rate is 13.54% higher when spraying flat surfaces but that the film thickness uniformity is improved from 31.68% to 4.79% when spraying free-form surfaces. The results verify the effectiveness of this method for free-form surfaces.

Keywords spraying optimization      complementary spray gun model      NURBS surface      variable-size brushes      spraying with different speeds and distances     
Corresponding Authors: Guolei WANG     E-mail: wangguolei@mail.tsinghua.edu.cn
Issue Date: 14 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaotong HUA
Simin ZHANG
Xingjie LIU
Zhiliang CHEN
Guolei WANG
Ken CHEN
Cite this article:   
Xiaotong HUA,Simin ZHANG,Xingjie LIU, et al. Optimization of spraying trajectory based on elliptical double β spraying gun model[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(12): 985-992.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.25.020     OR     http://jst.tsinghuajournals.com/EN/Y2020/V60/I12/985
  
  
  
10.16511/j.cnki.qhdxxb.2020.25.020.T001

基础喷涂模型参数

β 最大膜厚/μm 轮廓跨度/mm
3 50 300
  
10.16511/j.cnki.qhdxxb.2020.25.020.T002

互补喷枪模型参数及喷涂效果

指标 数值
拟合β 3.83
最大膜厚/μm 50
轮廓跨度/mm 300
期望膜厚/μm 50
平均膜厚/μm 50.04
膜厚标准差/μm 0.85
  
10.16511/j.cnki.qhdxxb.2020.25.020.T003

三维喷枪模型参数

β1 β2 最大膜厚/μm 椭圆长轴/mm 椭圆短轴/mm
2 2 20 150 30
  
  
  
  
10.16511/j.cnki.qhdxxb.2020.25.020.T004

平面喷涂实验参数

实验参数 互补模型法 传统方法
喷涂速度/(mm·s-1) 200 200
椭圆半长轴/mm 150 150
椭圆半短轴/mm 26.74 30
β1 2.26 2
β2 0.79 2
搭接距离/mm / 96.59
        
10.16511/j.cnki.qhdxxb.2020.25.020.T005

漆料利用率及膜厚均匀度对比

参数 互补模型法 传统方法
漆料利用率/% 46.70 33.16
膜厚均匀度/% 1.67 0.03
                       
10.16511/j.cnki.qhdxxb.2020.25.020.T006

自由曲面喷涂膜厚均匀度对比

参数 可变画笔法 传统方法
膜厚均匀度/% 4.79 31.68
  
2 BALKAN T , ARIKAN M A S . Surface and process modeling and off-line programming for robotic spray painting of curved surfaces[J]. Journal of Robotic Systems, 2000. 17 (9): 479- 494.
doi: 10.1002/1097-4563(200009)17:9<479::AID-ROB3>3.0.CO;2-L
3 BALKAN T , ARIKAN M A S . Modeling of paint flow rate flux for circular paint sprays by using experimental paint thickness distribution[J]. Mechanics Research Communications, 1999. 26 (5): 609- 617.
doi: 10.1016/S0093-6413(99)00069-5
4 CONNER D C , GREENFIELD A , ATKAR P N , et al. Paint deposition modeling for trajectory planning on automotive surfaces[J]. IEEE Transactions on Automation Science and Engineering, 2005. 2 (4): 381- 392.
doi: 10.1109/TASE.2005.851631
7 邵振华.基于表面分割的复杂曲面喷涂路径规划与离线编程系统实现[D].南京:东南大学, 2015.
7 SHAO Z H. Spraying trajectory planning based on segmentation of complex free surfaces and development of off-line programming system[D]. Nanjing: Southeast University, 2015. (in Chinese)
8 曾勇.大型复杂自由曲面的喷涂机器人喷枪轨迹优化研究[D].兰州:兰州理工大学, 2011.
8 ZENG Y. The research on spray tool trajectory optimization of painting robot for large and complex free-form curved surface[D]. Lanzhou: Lanzhou University of Technology, 2011. (in Chinese)
9 张鹏.面向大曲率复杂曲面的喷涂机器人喷枪轨迹优化方法研究[D].兰州:兰州理工大学, 2017.
9 ZHANG P. Study on spray too trajectory optimization method of spray-painting robot for large curvature and complex surface[D]. Lanzhou: Lanzhou University of Technology, 2017. (in Chinese)
11 熊浩.面向小曲率曲面的喷涂机器人喷涂轨迹规划[D].重庆:重庆大学, 2016.
11 XIONG H. Spraying trajectory planning of spraying robot on small curvature surface[D]. Chongqing: Chongqing University, 2016. (in Chinese)
13 陈伟.喷涂机器人轨迹优化关键技术研究[D].镇江:江苏大学, 2013.
13 CHEN W. Research on key techniques of robotic spray painting trajectory optimization robot[D]. Zhenjiang: Jiangsu University, 2013.(in Chinese)
14 SHENG W H, XI N, CHEN H P, et al. Part geometric understanding for tool path planning in additive manufacturing[C]//IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium. Kobe, Japan: IEEE, 2003: 1515-1520.
17 ATKAR P N, CHOSET H, RIZZI A A. Towards optimal coverage of 2-dimensional surfaces embedded in IR3: Choice of start curve[C]//Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003: 3581-3587.
18 邢悦.异形曲面快速重构优化技术研究[D].长春:长春理工大学, 2018.
18 XING Y. Research on rapid reconstruction and optimization of special-shaped surface[D]. Changchun: Changchun University of Science and Technology, 2018. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd